
FFmpeg Filters Documentation

Table of Contents
1 Description
2 Filtering Introduction
3 graph2dot
4 Filtergraph description

4.1 Filtergraph syntax
4.2 Notes on filtergraph escaping

5 Timeline editing
6 Options for filters with several inputs (framesync)
7 Audio Filters

7.1 acompressor
7.2 acontrast
7.3 acopy
7.4 acrossfade

7.4.1 Examples
7.5 acrusher
7.6 adeclick
7.7 adeclip
7.8 adelay

7.8.1 Examples
7.9 aderivative, aintegral
7.10 aecho

7.10.1 Examples
7.11 aemphasis
7.12 aeval

7.12.1 Examples
7.13 afade

7.13.1 Examples
7.14 afftfilt

7.14.1 Examples
7.15 afir

7.15.1 Examples
7.16 aformat
7.17 agate
7.18 aiir

7.18.1 Examples
7.19 alimiter
7.20 allpass

7.20.1 Commands
7.21 aloop

7.22 amerge
7.22.1 Examples

7.23 amix
7.24 anequalizer

7.24.1 Examples
7.24.2 Commands

7.25 anull
7.26 apad

7.26.1 Examples
7.27 aphaser
7.28 apulsator
7.29 aresample

7.29.1 Examples
7.30 areverse

7.30.1 Examples
7.31 asetnsamples
7.32 asetrate
7.33 ashowinfo
7.34 astats
7.35 atempo

7.35.1 Examples
7.36 atrim
7.37 bandpass

7.37.1 Commands
7.38 bandreject

7.38.1 Commands
7.39 bass, lowshelf

7.39.1 Commands
7.40 biquad

7.40.1 Commands
7.41 bs2b
7.42 channelmap

7.42.1 Examples
7.43 channelsplit

7.43.1 Examples
7.44 chorus

7.44.1 Examples
7.45 compand

7.45.1 Examples
7.46 compensationdelay
7.47 crossfeed
7.48 crystalizer
7.49 dcshift

7.50 drmeter
7.51 dynaudnorm
7.52 earwax
7.53 equalizer

7.53.1 Examples
7.53.2 Commands

7.54 extrastereo
7.55 firequalizer

7.55.1 Examples
7.56 flanger
7.57 haas
7.58 hdcd
7.59 headphone

7.59.1 Examples
7.60 highpass

7.60.1 Commands
7.61 join
7.62 ladspa

7.62.1 Examples
7.62.2 Commands

7.63 loudnorm
7.64 lowpass

7.64.1 Examples
7.64.2 Commands

7.65 lv2
7.65.1 Examples

7.66 mcompand
7.67 pan

7.67.1 Mixing examples
7.67.2 Remapping examples

7.68 replaygain
7.69 resample
7.70 rubberband
7.71 sidechaincompress

7.71.1 Examples
7.72 sidechaingate
7.73 silencedetect

7.73.1 Examples
7.74 silenceremove

7.74.1 Examples
7.75 sofalizer

7.75.1 Examples
7.76 stereotools

7.76.1 Examples
7.77 stereowiden
7.78 superequalizer
7.79 surround
7.80 treble, highshelf

7.80.1 Commands
7.81 tremolo
7.82 vibrato
7.83 volume

7.83.1 Commands
7.83.2 Examples

7.84 volumedetect
7.84.1 Examples

8 Audio Sources
8.1 abuffer

8.1.1 Examples
8.2 aevalsrc

8.2.1 Examples
8.3 anullsrc

8.3.1 Examples
8.4 flite

8.4.1 Examples
8.5 anoisesrc

8.5.1 Examples
8.6 hilbert
8.7 sine

8.7.1 Examples
9 Audio Sinks

9.1 abuffersink
9.2 anullsink

10 Video Filters
10.1 alphaextract
10.2 alphamerge
10.3 amplify
10.4 ass
10.5 atadenoise
10.6 avgblur
10.7 bbox
10.8 bitplanenoise
10.9 blackdetect
10.10 blackframe
10.11 blend, tblend

10.11.1 Examples

10.12 boxblur
10.12.1 Examples

10.13 bwdif
10.14 chromakey

10.14.1 Examples
10.15 ciescope
10.16 codecview

10.16.1 Examples
10.17 colorbalance

10.17.1 Examples
10.18 colorkey

10.18.1 Examples
10.19 colorlevels

10.19.1 Examples
10.20 colorchannelmixer

10.20.1 Examples
10.21 colormatrix
10.22 colorspace
10.23 convolution

10.23.1 Examples
10.24 convolve
10.25 copy
10.26 coreimage

10.26.1 Examples
10.27 crop

10.27.1 Examples
10.27.2 Commands

10.28 cropdetect
10.29 curves

10.29.1 Examples
10.30 datascope
10.31 dctdnoiz

10.31.1 Examples
10.32 deband
10.33 deblock

10.33.1 Examples
10.34 decimate
10.35 deconvolve
10.36 deflate
10.37 deflicker
10.38 dejudder
10.39 delogo

10.39.1 Examples

10.40 deshake
10.41 despill
10.42 detelecine
10.43 dilation
10.44 displace

10.44.1 Examples
10.45 drawbox

10.45.1 Examples
10.46 drawgrid

10.46.1 Examples
10.47 drawtext

10.47.1 Syntax
10.47.2 Text expansion
10.47.3 Examples

10.48 edgedetect
10.48.1 Examples

10.49 eq
10.49.1 Commands

10.50 erosion
10.51 extractplanes

10.51.1 Examples
10.52 elbg
10.53 entropy
10.54 fade

10.54.1 Examples
10.55 fftfilt

10.55.1 Examples
10.56 fftdnoiz
10.57 field
10.58 fieldhint
10.59 fieldmatch

10.59.1 p/c/n/u/b meaning
10.59.1.1 p/c/n
10.59.1.2 u/b

10.59.2 Examples
10.60 fieldorder
10.61 fifo, afifo
10.62 fillborders
10.63 find_rect

10.63.1 Examples
10.64 cover_rect

10.64.1 Examples
10.65 floodfill

10.66 format
10.66.1 Examples

10.67 fps
10.67.1 Examples

10.68 framepack
10.69 framerate
10.70 framestep
10.71 frei0r

10.71.1 Examples
10.72 fspp
10.73 gblur
10.74 geq

10.74.1 Examples
10.75 gradfun

10.75.1 Examples
10.76 greyedge

10.76.1 Examples
10.77 haldclut

10.77.1 Workflow examples
10.77.1.1 Hald CLUT video stream
10.77.1.2 Hald CLUT with preview

10.78 hflip
10.79 histeq
10.80 histogram

10.80.1 Examples
10.81 hqdn3d
10.82 hwdownload
10.83 hwmap
10.84 hwupload
10.85 hwupload_cuda
10.86 hqx
10.87 hstack
10.88 hue

10.88.1 Examples
10.88.2 Commands

10.89 hysteresis
10.90 idet
10.91 il
10.92 inflate
10.93 interlace
10.94 kerndeint

10.94.1 Examples
10.95 lenscorrection

10.95.1 Options
10.96 lensfun

10.96.1 Examples
10.97 libvmaf
10.98 limiter
10.99 loop
10.100 lut3d
10.101 lumakey
10.102 lut, lutrgb, lutyuv

10.102.1 Examples
10.103 lut2, tlut2

10.103.1 Examples
10.104 maskedclamp
10.105 maskedmerge
10.106 mcdeint
10.107 mergeplanes

10.107.1 Examples
10.108 mestimate
10.109 midequalizer
10.110 minterpolate
10.111 mix
10.112 mpdecimate
10.113 negate
10.114 nlmeans
10.115 nnedi
10.116 noformat

10.116.1 Examples
10.117 noise

10.117.1 Examples
10.118 normalize

10.118.1 Examples
10.119 null
10.120 ocr
10.121 ocv

10.121.1 dilate
10.121.2 erode
10.121.3 smooth

10.122 oscilloscope
10.122.1 Examples

10.123 overlay
10.123.1 Commands
10.123.2 Examples

10.124 owdenoise

10.125 pad
10.125.1 Examples

10.126 palettegen
10.126.1 Examples

10.127 paletteuse
10.127.1 Examples

10.128 perspective
10.129 phase
10.130 pixdesctest
10.131 pixscope
10.132 pp

10.132.1 Examples
10.133 pp7
10.134 premultiply
10.135 prewitt
10.136 program_opencl
10.137 pseudocolor

10.137.1 Examples
10.138 psnr
10.139 pullup
10.140 qp

10.140.1 Examples
10.141 random
10.142 readeia608

10.142.1 Examples
10.143 readvitc

10.143.1 Examples
10.144 remap
10.145 removegrain
10.146 removelogo
10.147 repeatfields
10.148 reverse

10.148.1 Examples
10.149 roberts
10.150 rotate

10.150.1 Examples
10.150.2 Commands

10.151 sab
10.152 scale

10.152.1 Options
10.152.2 Examples
10.152.3 Commands

10.153 scale_npp

10.154 scale2ref
10.154.1 Examples

10.155 selectivecolor
10.155.1 Examples

10.156 separatefields
10.157 setdar, setsar

10.157.1 Examples
10.158 setfield
10.159 showinfo
10.160 showpalette
10.161 shuffleframes

10.161.1 Examples
10.162 shuffleplanes

10.162.1 Examples
10.163 signalstats

10.163.1 Examples
10.164 signature

10.164.1 Examples
10.165 smartblur
10.166 ssim
10.167 stereo3d

10.167.1 Examples
10.168 streamselect, astreamselect

10.168.1 Commands
10.168.2 Examples

10.169 sobel
10.170 spp
10.171 sr
10.172 subtitles
10.173 super2xsai
10.174 swaprect
10.175 swapuv
10.176 telecine
10.177 threshold

10.177.1 Examples
10.178 thumbnail

10.178.1 Examples
10.179 tile

10.179.1 Examples
10.180 tinterlace
10.181 tmix

10.181.1 Examples
10.182 tonemap

10.182.1 Options
10.183 transpose
10.184 trim
10.185 unpremultiply
10.186 unsharp

10.186.1 Examples
10.187 uspp
10.188 vaguedenoiser
10.189 vectorscope
10.190 vidstabdetect

10.190.1 Examples
10.191 vidstabtransform

10.191.1 Options
10.191.2 Examples

10.192 vflip
10.193 vfrdet
10.194 vignette

10.194.1 Expressions
10.194.2 Examples

10.195 vmafmotion
10.196 vstack
10.197 w3fdif
10.198 waveform
10.199 weave, doubleweave

10.199.1 Examples
10.200 xbr
10.201 yadif
10.202 zoompan

10.202.1 Examples
10.203 zscale

10.203.1 Options
11 Video Sources

11.1 buffer
11.2 cellauto

11.2.1 Examples
11.3 coreimagesrc

11.3.1 Examples
11.4 mandelbrot
11.5 mptestsrc
11.6 frei0r_src
11.7 life

11.7.1 Examples
11.8 allrgb, allyuv, color, haldclutsrc, nullsrc, pal75bars, pal100bars, rgbtestsrc, smptebars,

smptehdbars, testsrc, testsrc2, yuvtestsrc
11.8.1 Examples
11.8.2 Commands

11.9 openclsrc
12 Video Sinks

12.1 buffersink
12.2 nullsink

13 Multimedia Filters
13.1 abitscope
13.2 ahistogram
13.3 aphasemeter
13.4 avectorscope

13.4.1 Examples
13.5 bench, abench

13.5.1 Examples
13.6 concat

13.6.1 Examples
13.6.2 Commands

13.7 drawgraph, adrawgraph
13.8 ebur128

13.8.1 Examples
13.9 interleave, ainterleave

13.9.1 Examples
13.10 metadata, ametadata

13.10.1 Examples
13.11 perms, aperms
13.12 realtime, arealtime
13.13 select, aselect

13.13.1 Examples
13.14 sendcmd, asendcmd

13.14.1 Commands syntax
13.14.2 Examples

13.15 setpts, asetpts
13.15.1 Examples

13.16 setrange
13.17 settb, asettb

13.17.1 Examples
13.18 showcqt

13.18.1 Examples
13.19 showfreqs
13.20 showspectrum

13.20.1 Examples
13.21 showspectrumpic

13.21.1 Examples
13.22 showvolume
13.23 showwaves

13.23.1 Examples
13.24 showwavespic

13.24.1 Examples
13.25 sidedata, asidedata
13.26 spectrumsynth

13.26.1 Examples
13.27 split, asplit

13.27.1 Examples
13.28 zmq, azmq

13.28.1 Examples
14 Multimedia Sources

14.1 amovie
14.2 movie

14.2.1 Examples
14.2.2 Commands

15 See Also
16 Authors

1 Description# TOC
This document describes filters, sources, and sinks provided by the libavfilter library.

2 Filtering Introduction# TOC
Filtering in FFmpeg is enabled through the libavfilter library.

In libavfilter, a filter can have multiple inputs and multiple outputs. To illustrate the sorts of things that are
possible, we consider the following filtergraph.

 [main]
input --> split ---------------------> overlay --> output
 | ^
 |[tmp] [flip]|
 +-----> crop --> vflip -------+

This filtergraph splits the input stream in two streams, then sends one stream through the crop filter and
the vflip filter, before merging it back with the other stream by overlaying it on top. You can use the
following command to achieve this:

ffmpeg -i INPUT -vf "split [main][tmp]; [tmp] crop=iw:ih/2:0:0, vflip [flip]; [main][flip] overlay=0:H/2" OUTPUT

The result will be that the top half of the video is mirrored onto the bottom half of the output video.

Filters in the same linear chain are separated by commas, and distinct linear chains of filters are separated
by semicolons. In our example, crop,vflip are in one linear chain, split and overlay are separately in
another. The points where the linear chains join are labelled by names enclosed in square brackets. In the
example, the split filter generates two outputs that are associated to the labels [main] and [tmp].

The stream sent to the second output of split, labelled as [tmp], is processed through the crop filter, which
crops away the lower half part of the video, and then vertically flipped. The overlay filter takes in input the
first unchanged output of the split filter (which was labelled as [main]), and overlay on its lower half the
output generated by the crop,vflip filterchain.

Some filters take in input a list of parameters: they are specified after the filter name and an equal sign,
and are separated from each other by a colon.

There exist so-called source filters that do not have an audio/video input, and sink filters that will not have
audio/video output.

3 graph2dot# TOC
The graph2dot program included in the FFmpeg tools directory can be used to parse a filtergraph
description and issue a corresponding textual representation in the dot language.

Invoke the command:

graph2dot -h

to see how to use graph2dot.

You can then pass the dot description to the dot program (from the graphviz suite of programs) and
obtain a graphical representation of the filtergraph.

For example the sequence of commands:

echo GRAPH_DESCRIPTION | \
tools/graph2dot -o graph.tmp && \
dot -Tpng graph.tmp -o graph.png && \
display graph.png

can be used to create and display an image representing the graph described by the
GRAPH_DESCRIPTION string. Note that this string must be a complete self-contained graph, with its
inputs and outputs explicitly defined. For example if your command line is of the form:

ffmpeg -i infile -vf scale=640:360 outfile

your GRAPH_DESCRIPTION string will need to be of the form:

nullsrc,scale=640:360,nullsink

you may also need to set the nullsrc parameters and add a format filter in order to simulate a specific input
file.

4 Filtergraph description# TOC
A filtergraph is a directed graph of connected filters. It can contain cycles, and there can be multiple links
between a pair of filters. Each link has one input pad on one side connecting it to one filter from which it
takes its input, and one output pad on the other side connecting it to one filter accepting its output.

Each filter in a filtergraph is an instance of a filter class registered in the application, which defines the
features and the number of input and output pads of the filter.

A filter with no input pads is called a "source", and a filter with no output pads is called a "sink".

4.1 Filtergraph syntax# TOC

A filtergraph has a textual representation, which is recognized by the -filter/-vf/-af and
-filter_complex options in ffmpeg and -vf/-af in ffplay, and by the
avfilter_graph_parse_ptr() function defined in libavfilter/avfilter.h.

A filterchain consists of a sequence of connected filters, each one connected to the previous one in the
sequence. A filterchain is represented by a list of ","-separated filter descriptions.

A filtergraph consists of a sequence of filterchains. A sequence of filterchains is represented by a list of
";"-separated filterchain descriptions.

A filter is represented by a string of the form:
[in_link_1]...[in_link_N]filter_name@id=arguments[out_link_1]...[out_link_M]

filter_name is the name of the filter class of which the described filter is an instance of, and has to be the
name of one of the filter classes registered in the program optionally followed by "@id". The name of the
filter class is optionally followed by a string "=arguments".

arguments is a string which contains the parameters used to initialize the filter instance. It may have one of
two forms:

A ’:’-separated list of key=value pairs.
A ’:’-separated list of value. In this case, the keys are assumed to be the option names in the order
they are declared. E.g. the fade filter declares three options in this order – type, start_frame
and nb_frames. Then the parameter list in:0:30 means that the value in is assigned to the option
type, 0 to start_frame and 30 to nb_frames.
A ’:’-separated list of mixed direct value and long key=value pairs. The direct value must precede the
key=value pairs, and follow the same constraints order of the previous point. The following
key=value pairs can be set in any preferred order.

If the option value itself is a list of items (e.g. the format filter takes a list of pixel formats), the items in
the list are usually separated by ‘|’.

The list of arguments can be quoted using the character ‘’’ as initial and ending mark, and the character
‘\’ for escaping the characters within the quoted text; otherwise the argument string is considered
terminated when the next special character (belonging to the set ‘[]=;,’) is encountered.

The name and arguments of the filter are optionally preceded and followed by a list of link labels. A link
label allows one to name a link and associate it to a filter output or input pad. The preceding labels
in_link_1 ... in_link_N, are associated to the filter input pads, the following labels out_link_1 ...
out_link_M, are associated to the output pads.

When two link labels with the same name are found in the filtergraph, a link between the corresponding
input and output pad is created.

If an output pad is not labelled, it is linked by default to the first unlabelled input pad of the next filter in
the filterchain. For example in the filterchain

nullsrc, split[L1], [L2]overlay, nullsink

the split filter instance has two output pads, and the overlay filter instance two input pads. The first output
pad of split is labelled "L1", the first input pad of overlay is labelled "L2", and the second output pad of
split is linked to the second input pad of overlay, which are both unlabelled.

In a filter description, if the input label of the first filter is not specified, "in" is assumed; if the output label
of the last filter is not specified, "out" is assumed.

In a complete filterchain all the unlabelled filter input and output pads must be connected. A filtergraph is
considered valid if all the filter input and output pads of all the filterchains are connected.

Libavfilter will automatically insert scale filters where format conversion is required. It is possible to
specify swscale flags for those automatically inserted scalers by prepending sws_flags=flags; to the
filtergraph description.

Here is a BNF description of the filtergraph syntax:

NAME ::= sequence of alphanumeric characters and ’_’
FILTER_NAME ::= NAME["@"NAME]
LINKLABEL ::= "[" NAME "]"
LINKLABELS ::= LINKLABEL [LINKLABELS]
FILTER_ARGUMENTS ::= sequence of chars (possibly quoted)
FILTER ::= [LINKLABELS] FILTER_NAME ["=" FILTER_ARGUMENTS] [LINKLABELS]
FILTERCHAIN ::= FILTER [,FILTERCHAIN]
FILTERGRAPH ::= [sws_flags=flags;] FILTERCHAIN [;FILTERGRAPH]

4.2 Notes on filtergraph escaping# TOC

Filtergraph description composition entails several levels of escaping. See (ffmpeg-utils)the "Quoting and
escaping" section in the ffmpeg-utils(1) manual for more information about the employed escaping
procedure.

A first level escaping affects the content of each filter option value, which may contain the special
character : used to separate values, or one of the escaping characters \’.

A second level escaping affects the whole filter description, which may contain the escaping characters \’
or the special characters [],; used by the filtergraph description.

Finally, when you specify a filtergraph on a shell commandline, you need to perform a third level escaping
for the shell special characters contained within it.

For example, consider the following string to be embedded in the drawtext filter description text value:

this is a ’string’: may contain one, or more, special characters

This string contains the ’ special escaping character, and the : special character, so it needs to be escaped
in this way:

text=this is a \’string\’\: may contain one, or more, special characters

A second level of escaping is required when embedding the filter description in a filtergraph description,
in order to escape all the filtergraph special characters. Thus the example above becomes:

drawtext=text=this is a \\\’string\\\’\\: may contain one\, or more\, special characters

(note that in addition to the \’ escaping special characters, also , needs to be escaped).

Finally an additional level of escaping is needed when writing the filtergraph description in a shell
command, which depends on the escaping rules of the adopted shell. For example, assuming that \ is
special and needs to be escaped with another \, the previous string will finally result in:

-vf "drawtext=text=this is a \\\\\\’string\\\\\\’\\\\: may contain one\\, or more\\, special characters"

5 Timeline editing# TOC
Some filters support a generic enable option. For the filters supporting timeline editing, this option can
be set to an expression which is evaluated before sending a frame to the filter. If the evaluation is
non-zero, the filter will be enabled, otherwise the frame will be sent unchanged to the next filter in the
filtergraph.

The expression accepts the following values:

‘t’

timestamp expressed in seconds, NAN if the input timestamp is unknown

‘n’

sequential number of the input frame, starting from 0

‘pos’

the position in the file of the input frame, NAN if unknown

‘w’
‘h’

width and height of the input frame if video

Additionally, these filters support an enable command that can be used to re-define the expression.

Like any other filtering option, the enable option follows the same rules.

For example, to enable a blur filter (smartblur) from 10 seconds to 3 minutes, and a curves filter starting at
3 seconds:

smartblur = enable=’between(t,10,3*60)’,
curves = enable=’gte(t,3)’ : preset=cross_process

See ffmpeg -filters to view which filters have timeline support.

6 Options for filters with several inputs (framesync)# TOC
Some filters with several inputs support a common set of options. These options can only be set by name,
not with the short notation.

eof_action

The action to take when EOF is encountered on the secondary input; it accepts one of the following
values:

repeat

Repeat the last frame (the default).

endall

End both streams.

pass

Pass the main input through.

shortest

If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

repeatlast

If set to 1, force the filter to extend the last frame of secondary streams until the end of the primary
stream. A value of 0 disables this behavior. Default value is 1.

7 Audio Filters# TOC
When you configure your FFmpeg build, you can disable any of the existing filters using
--disable-filters. The configure output will show the audio filters included in your build.

Below is a description of the currently available audio filters.

7.1 acompressor# TOC

A compressor is mainly used to reduce the dynamic range of a signal. Especially modern music is mostly
compressed at a high ratio to improve the overall loudness. It’s done to get the highest attention of a
listener, "fatten" the sound and bring more "power" to the track. If a signal is compressed too much it may
sound dull or "dead" afterwards or it may start to "pump" (which could be a powerful effect but can also
destroy a track completely). The right compression is the key to reach a professional sound and is the high
art of mixing and mastering. Because of its complex settings it may take a long time to get the right feeling
for this kind of effect.

Compression is done by detecting the volume above a chosen level threshold and dividing it by the
factor set with ratio. So if you set the threshold to -12dB and your signal reaches -6dB a ratio of 2:1
will result in a signal at -9dB. Because an exact manipulation of the signal would cause distortion of the
waveform the reduction can be levelled over the time. This is done by setting "Attack" and "Release".
attack determines how long the signal has to rise above the threshold before any reduction will occur
and release sets the time the signal has to fall below the threshold to reduce the reduction again.
Shorter signals than the chosen attack time will be left untouched. The overall reduction of the signal can
be made up afterwards with the makeup setting. So compressing the peaks of a signal about 6dB and
raising the makeup to this level results in a signal twice as loud than the source. To gain a softer entry in
the compression the knee flattens the hard edge at the threshold in the range of the chosen decibels.

The filter accepts the following options:

level_in

Set input gain. Default is 1. Range is between 0.015625 and 64.

threshold

If a signal of stream rises above this level it will affect the gain reduction. By default it is 0.125.
Range is between 0.00097563 and 1.

ratio

Set a ratio by which the signal is reduced. 1:2 means that if the level rose 4dB above the threshold, it
will be only 2dB above after the reduction. Default is 2. Range is between 1 and 20.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction starts.
Default is 20. Range is between 0.01 and 2000.

release

Amount of milliseconds the signal has to fall below the threshold before reduction is decreased again.
Default is 250. Range is between 0.01 and 9000.

makeup

Set the amount by how much signal will be amplified after processing. Default is 1. Range is from 1
to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.82843.
Range is between 1 and 8.

link

Choose if the average level between all channels of input stream or the louder(maximum) channel
of input stream affects the reduction. Default is average.

detection

Should the exact signal be taken in case of peak or an RMS one in case of rms. Default is rms
which is mostly smoother.

mix

How much to use compressed signal in output. Default is 1. Range is between 0 and 1.

7.2 acontrast# TOC

Simple audio dynamic range commpression/expansion filter.

The filter accepts the following options:

contrast

Set contrast. Default is 33. Allowed range is between 0 and 100.

7.3 acopy# TOC

Copy the input audio source unchanged to the output. This is mainly useful for testing purposes.

7.4 acrossfade# TOC

Apply cross fade from one input audio stream to another input audio stream. The cross fade is applied for
specified duration near the end of first stream.

The filter accepts the following options:

nb_samples, ns

Specify the number of samples for which the cross fade effect has to last. At the end of the cross fade
effect the first input audio will be completely silent. Default is 44100.

duration, d

Specify the duration of the cross fade effect. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. By default the duration is determined by nb_samples.
If set this option is used instead of nb_samples.

overlap, o

Should first stream end overlap with second stream start. Default is enabled.

curve1

Set curve for cross fade transition for first stream.

curve2

Set curve for cross fade transition for second stream.

For description of available curve types see afade filter description.

7.4.1 Examples# TOC

Cross fade from one input to another:

ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:c1=exp:c2=exp output.flac

Cross fade from one input to another but without overlapping:

ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:o=0:c1=exp:c2=exp output.flac

7.5 acrusher# TOC

Reduce audio bit resolution.

This filter is bit crusher with enhanced functionality. A bit crusher is used to audibly reduce number of bits
an audio signal is sampled with. This doesn’t change the bit depth at all, it just produces the effect.
Material reduced in bit depth sounds more harsh and "digital". This filter is able to even round to
continuous values instead of discrete bit depths. Additionally it has a D/C offset which results in different
crushing of the lower and the upper half of the signal. An Anti-Aliasing setting is able to produce "softer"
crushing sounds.

Another feature of this filter is the logarithmic mode. This setting switches from linear distances between
bits to logarithmic ones. The result is a much more "natural" sounding crusher which doesn’t gate low
signals for example. The human ear has a logarithmic perception, so this kind of crushing is much more
pleasant. Logarithmic crushing is also able to get anti-aliased.

The filter accepts the following options:

level_in

Set level in.

level_out

Set level out.

bits

Set bit reduction.

mix

Set mixing amount.

mode

Can be linear: lin or logarithmic: log.

dc

Set DC.

aa

Set anti-aliasing.

samples

Set sample reduction.

lfo

Enable LFO. By default disabled.

lforange

Set LFO range.

lforate

Set LFO rate.

7.6 adeclick# TOC

Remove impulsive noise from input audio.

Samples detected as impulsive noise are replaced by interpolated samples using autoregressive modelling.

w

Set window size, in milliseconds. Allowed range is from 10 to 100. Default value is 55
milliseconds. This sets size of window which will be processed at once.

o

Set window overlap, in percentage of window size. Allowed range is from 50 to 95. Default value is
75 percent. Setting this to a very high value increases impulsive noise removal but makes whole
process much slower.

a

Set autoregression order, in percentage of window size. Allowed range is from 0 to 25. Default value
is 2 percent. This option also controls quality of interpolated samples using neighbour good samples.

t

Set threshold value. Allowed range is from 1 to 100. Default value is 2. This controls the strength of
impulsive noise which is going to be removed. The lower value, the more samples will be detected as
impulsive noise.

b

Set burst fusion, in percentage of window size. Allowed range is 0 to 10. Default value is 2. If any
two samples deteced as noise are spaced less than this value then any sample inbetween those two
samples will be also detected as noise.

m

Set overlap method.

It accepts the following values:

a

Select overlap-add method. Even not interpolated samples are slightly changed with this
method.

s

Select overlap-save method. Not interpolated samples remain unchanged.

Default value is a.

7.7 adeclip# TOC

Remove clipped samples from input audio.

Samples detected as clipped are replaced by interpolated samples using autoregressive modelling.

w

Set window size, in milliseconds. Allowed range is from 10 to 100. Default value is 55
milliseconds. This sets size of window which will be processed at once.

o

Set window overlap, in percentage of window size. Allowed range is from 50 to 95. Default value is
75 percent.

a

Set autoregression order, in percentage of window size. Allowed range is from 0 to 25. Default value
is 8 percent. This option also controls quality of interpolated samples using neighbour good samples.

t

Set threshold value. Allowed range is from 1 to 100. Default value is 10. Higher values make clip
detection less aggressive.

n

Set size of histogram used to detect clips. Allowed range is from 100 to 9999. Default value is
1000. Higher values make clip detection less aggressive.

m

Set overlap method.

It accepts the following values:

a

Select overlap-add method. Even not interpolated samples are slightly changed with this
method.

s

Select overlap-save method. Not interpolated samples remain unchanged.

Default value is a.

7.8 adelay# TOC

Delay one or more audio channels.

Samples in delayed channel are filled with silence.

The filter accepts the following option:

delays

Set list of delays in milliseconds for each channel separated by ’|’. Unused delays will be silently
ignored. If number of given delays is smaller than number of channels all remaining channels will not
be delayed. If you want to delay exact number of samples, append ’S’ to number.

7.8.1 Examples# TOC

Delay first channel by 1.5 seconds, the third channel by 0.5 seconds and leave the second channel
(and any other channels that may be present) unchanged.

adelay=1500|0|500

Delay second channel by 500 samples, the third channel by 700 samples and leave the first channel
(and any other channels that may be present) unchanged.

adelay=0|500S|700S

7.9 aderivative, aintegral# TOC

Compute derivative/integral of audio stream.

Applying both filters one after another produces original audio.

7.10 aecho# TOC

Apply echoing to the input audio.

Echoes are reflected sound and can occur naturally amongst mountains (and sometimes large buildings)
when talking or shouting; digital echo effects emulate this behaviour and are often used to help fill out the
sound of a single instrument or vocal. The time difference between the original signal and the reflection is
the delay, and the loudness of the reflected signal is the decay. Multiple echoes can have different
delays and decays.

A description of the accepted parameters follows.

in_gain

Set input gain of reflected signal. Default is 0.6.

out_gain

Set output gain of reflected signal. Default is 0.3.

delays

Set list of time intervals in milliseconds between original signal and reflections separated by ’|’.
Allowed range for each delay is (0 - 90000.0]. Default is 1000.

decays

Set list of loudness of reflected signals separated by ’|’. Allowed range for each decay is (0 -
1.0]. Default is 0.5.

7.10.1 Examples# TOC

Make it sound as if there are twice as many instruments as are actually playing:

aecho=0.8:0.88:60:0.4

If delay is very short, then it sound like a (metallic) robot playing music:

aecho=0.8:0.88:6:0.4

A longer delay will sound like an open air concert in the mountains:

aecho=0.8:0.9:1000:0.3

Same as above but with one more mountain:

aecho=0.8:0.9:1000|1800:0.3|0.25

7.11 aemphasis# TOC

Audio emphasis filter creates or restores material directly taken from LPs or emphased CDs with different
filter curves. E.g. to store music on vinyl the signal has to be altered by a filter first to even out the
disadvantages of this recording medium. Once the material is played back the inverse filter has to be
applied to restore the distortion of the frequency response.

The filter accepts the following options:

level_in

Set input gain.

level_out

Set output gain.

mode

Set filter mode. For restoring material use reproduction mode, otherwise use production
mode. Default is reproduction mode.

type

Set filter type. Selects medium. Can be one of the following:

col

select Columbia.

emi

select EMI.

bsi

select BSI (78RPM).

riaa

select RIAA.

cd

select Compact Disc (CD).

50fm

select 50Âµs (FM).

75fm

select 75Âµs (FM).

50kf

select 50Âµs (FM-KF).

75kf

select 75Âµs (FM-KF).

7.12 aeval# TOC

Modify an audio signal according to the specified expressions.

This filter accepts one or more expressions (one for each channel), which are evaluated and used to
modify a corresponding audio signal.

It accepts the following parameters:

exprs

Set the ’|’-separated expressions list for each separate channel. If the number of input channels is
greater than the number of expressions, the last specified expression is used for the remaining output
channels.

channel_layout, c

Set output channel layout. If not specified, the channel layout is specified by the number of
expressions. If set to ‘same’, it will use by default the same input channel layout.

Each expression in exprs can contain the following constants and functions:

ch

channel number of the current expression

n

number of the evaluated sample, starting from 0

s

sample rate

t

time of the evaluated sample expressed in seconds

nb_in_channels
nb_out_channels

input and output number of channels

val(CH)

the value of input channel with number CH

Note: this filter is slow. For faster processing you should use a dedicated filter.

7.12.1 Examples# TOC

Half volume:

aeval=val(ch)/2:c=same

Invert phase of the second channel:

aeval=val(0)|-val(1)

7.13 afade# TOC

Apply fade-in/out effect to input audio.

A description of the accepted parameters follows.

type, t

Specify the effect type, can be either in for fade-in, or out for a fade-out effect. Default is in.

start_sample, ss

Specify the number of the start sample for starting to apply the fade effect. Default is 0.

nb_samples, ns

Specify the number of samples for which the fade effect has to last. At the end of the fade-in effect
the output audio will have the same volume as the input audio, at the end of the fade-out transition
the output audio will be silence. Default is 44100.

start_time, st

Specify the start time of the fade effect. Default is 0. The value must be specified as a time duration;
see (ffmpeg-utils)the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. If
set this option is used instead of start_sample.

duration, d

Specify the duration of the fade effect. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. At the end of the fade-in effect the output audio will
have the same volume as the input audio, at the end of the fade-out transition the output audio will be
silence. By default the duration is determined by nb_samples. If set this option is used instead of
nb_samples.

curve

Set curve for fade transition.

It accepts the following values:

tri

select triangular, linear slope (default)

qsin

select quarter of sine wave

hsin

select half of sine wave

esin

select exponential sine wave

log

select logarithmic

ipar

select inverted parabola

qua

select quadratic

cub

select cubic

squ

select square root

cbr

select cubic root

par

select parabola

exp

select exponential

iqsin

select inverted quarter of sine wave

ihsin

select inverted half of sine wave

dese

select double-exponential seat

desi

select double-exponential sigmoid

7.13.1 Examples# TOC

Fade in first 15 seconds of audio:

afade=t=in:ss=0:d=15

Fade out last 25 seconds of a 900 seconds audio:

afade=t=out:st=875:d=25

7.14 afftfilt# TOC

Apply arbitrary expressions to samples in frequency domain.

real

Set frequency domain real expression for each separate channel separated by ’|’. Default is "1". If the
number of input channels is greater than the number of expressions, the last specified expression is
used for the remaining output channels.

imag

Set frequency domain imaginary expression for each separate channel separated by ’|’. If not set, real
option is used.

Each expression in real and imag can contain the following constants:

sr

sample rate

b

current frequency bin number

nb

number of available bins

ch

channel number of the current expression

chs

number of channels

pts

current frame pts

win_size

Set window size.

It accepts the following values:

‘w16’
‘w32’
‘w64’
‘w128’
‘w256’

‘w512’
‘w1024’
‘w2048’
‘w4096’
‘w8192’
‘w16384’
‘w32768’
‘w65536’

Default is w4096

win_func

Set window function. Default is hann.

overlap

Set window overlap. If set to 1, the recommended overlap for selected window function will be
picked. Default is 0.75.

7.14.1 Examples# TOC

Leave almost only low frequencies in audio:

afftfilt="1-clip((b/nb)*b,0,1)"

7.15 afir# TOC

Apply an arbitrary Frequency Impulse Response filter.

This filter is designed for applying long FIR filters, up to 30 seconds long.

It can be used as component for digital crossover filters, room equalization, cross talk cancellation,
wavefield synthesis, auralization, ambiophonics and ambisonics.

This filter uses second stream as FIR coefficients. If second stream holds single channel, it will be used for
all input channels in first stream, otherwise number of channels in second stream must be same as number
of channels in first stream.

It accepts the following parameters:

dry

Set dry gain. This sets input gain.

wet

Set wet gain. This sets final output gain.

length

Set Impulse Response filter length. Default is 1, which means whole IR is processed.

again

Enable applying gain measured from power of IR.

maxir

Set max allowed Impulse Response filter duration in seconds. Default is 30 seconds. Allowed range
is 0.1 to 60 seconds.

response

Show IR frequency reponse, magnitude and phase in additional video stream. By default it is
disabled.

channel

Set for which IR channel to display frequency response. By default is first channel displayed. This
option is used only when response is enabled.

size

Set video stream size. This option is used only when response is enabled.

7.15.1 Examples# TOC

Apply reverb to stream using mono IR file as second input, complete command using ffmpeg:

ffmpeg -i input.wav -i middle_tunnel_1way_mono.wav -lavfi afir output.wav

7.16 aformat# TOC

Set output format constraints for the input audio. The framework will negotiate the most appropriate
format to minimize conversions.

It accepts the following parameters:

sample_fmts

A ’|’-separated list of requested sample formats.

sample_rates

A ’|’-separated list of requested sample rates.

channel_layouts

A ’|’-separated list of requested channel layouts.

See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

If a parameter is omitted, all values are allowed.

Force the output to either unsigned 8-bit or signed 16-bit stereo

aformat=sample_fmts=u8|s16:channel_layouts=stereo

7.17 agate# TOC

A gate is mainly used to reduce lower parts of a signal. This kind of signal processing reduces disturbing
noise between useful signals.

Gating is done by detecting the volume below a chosen level threshold and dividing it by the factor set
with ratio. The bottom of the noise floor is set via range. Because an exact manipulation of the signal
would cause distortion of the waveform the reduction can be levelled over time. This is done by setting
attack and release.

attack determines how long the signal has to fall below the threshold before any reduction will occur and
release sets the time the signal has to rise above the threshold to reduce the reduction again. Shorter
signals than the chosen attack time will be left untouched.

level_in

Set input level before filtering. Default is 1. Allowed range is from 0.015625 to 64.

range

Set the level of gain reduction when the signal is below the threshold. Default is 0.06125. Allowed
range is from 0 to 1.

threshold

If a signal rises above this level the gain reduction is released. Default is 0.125. Allowed range is
from 0 to 1.

ratio

Set a ratio by which the signal is reduced. Default is 2. Allowed range is from 1 to 9000.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction stops. Default
is 20 milliseconds. Allowed range is from 0.01 to 9000.

release

Amount of milliseconds the signal has to fall below the threshold before the reduction is increased
again. Default is 250 milliseconds. Allowed range is from 0.01 to 9000.

makeup

Set amount of amplification of signal after processing. Default is 1. Allowed range is from 1 to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is
2.828427125. Allowed range is from 1 to 8.

detection

Choose if exact signal should be taken for detection or an RMS like one. Default is rms. Can be
peak or rms.

link

Choose if the average level between all channels or the louder channel affects the reduction. Default
is average. Can be average or maximum.

7.18 aiir# TOC

Apply an arbitrary Infinite Impulse Response filter.

It accepts the following parameters:

z

Set numerator/zeros coefficients.

p

Set denominator/poles coefficients.

k

Set channels gains.

dry_gain

Set input gain.

wet_gain

Set output gain.

f

Set coefficients format.

‘tf’

transfer function

‘zp’

Z-plane zeros/poles, cartesian (default)

‘pr’

Z-plane zeros/poles, polar radians

‘pd’

Z-plane zeros/poles, polar degrees

r

Set kind of processing. Can be d - direct or s - serial cascading. Defauls is s.

e

Set filtering precision.

‘dbl’

double-precision floating-point (default)

‘flt’

single-precision floating-point

‘i32’

32-bit integers

‘i16’

16-bit integers

response

Show IR frequency reponse, magnitude and phase in additional video stream. By default it is
disabled.

channel

Set for which IR channel to display frequency response. By default is first channel displayed. This
option is used only when response is enabled.

size

Set video stream size. This option is used only when response is enabled.

Coefficients in tf format are separated by spaces and are in ascending order.

Coefficients in zp format are separated by spaces and order of coefficients doesn’t matter. Coefficients in
zp format are complex numbers with i imaginary unit.

Different coefficients and gains can be provided for every channel, in such case use ’|’ to separate
coefficients or gains. Last provided coefficients will be used for all remaining channels.

7.18.1 Examples# TOC

Apply 2 pole elliptic notch at arround 5000Hz for 48000 Hz sample rate:
aiir=k=1:z=7.957584807809675810E-1 -2.575128568908332300 3.674839853930788710 -2.57512875289799137 7.957586296317130880E-1:p=1 -2.86950072432325953 3.63022088054647218 -2.28075678147272232 6.361362326477423500E-1:f=tf:r=d

Same as above but in zp format:
aiir=k=0.79575848078096756:z=0.80918701+0.58773007i 0.80918701-0.58773007i 0.80884700+0.58784055i 0.80884700-0.58784055i:p=0.63892345+0.59951235i 0.63892345-0.59951235i 0.79582691+0.44198673i 0.79582691-0.44198673i:f=zp:r=s

7.19 alimiter# TOC

The limiter prevents an input signal from rising over a desired threshold. This limiter uses lookahead
technology to prevent your signal from distorting. It means that there is a small delay after the signal is
processed. Keep in mind that the delay it produces is the attack time you set.

The filter accepts the following options:

level_in

Set input gain. Default is 1.

level_out

Set output gain. Default is 1.

limit

Don’t let signals above this level pass the limiter. Default is 1.

attack

The limiter will reach its attenuation level in this amount of time in milliseconds. Default is 5
milliseconds.

release

Come back from limiting to attenuation 1.0 in this amount of milliseconds. Default is 50
milliseconds.

asc

When gain reduction is always needed ASC takes care of releasing to an average reduction level
rather than reaching a reduction of 0 in the release time.

asc_level

Select how much the release time is affected by ASC, 0 means nearly no changes in release time
while 1 produces higher release times.

level

Auto level output signal. Default is enabled. This normalizes audio back to 0dB if enabled.

Depending on picked setting it is recommended to upsample input 2x or 4x times with aresample before
applying this filter.

7.20 allpass# TOC

Apply a two-pole all-pass filter with central frequency (in Hz) frequency, and filter-width width. An
all-pass filter changes the audio’s frequency to phase relationship without changing its frequency to
amplitude relationship.

The filter accepts the following options:

frequency, f

Set frequency in Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units.

channels, c

Specify which channels to filter, by default all available are filtered.

7.20.1 Commands# TOC

This filter supports the following commands:

frequency, f

Change allpass frequency. Syntax for the command is : "frequency"

width_type, t

Change allpass width_type. Syntax for the command is : "width_type"

width, w

Change allpass width. Syntax for the command is : "width"

7.21 aloop# TOC

Loop audio samples.

The filter accepts the following options:

loop

Set the number of loops. Setting this value to -1 will result in infinite loops. Default is 0.

size

Set maximal number of samples. Default is 0.

start

Set first sample of loop. Default is 0.

7.22 amerge# TOC

Merge two or more audio streams into a single multi-channel stream.

The filter accepts the following options:

inputs

Set the number of inputs. Default is 2.

If the channel layouts of the inputs are disjoint, and therefore compatible, the channel layout of the output
will be set accordingly and the channels will be reordered as necessary. If the channel layouts of the inputs
are not disjoint, the output will have all the channels of the first input then all the channels of the second
input, in that order, and the channel layout of the output will be the default value corresponding to the total
number of channels.

For example, if the first input is in 2.1 (FL+FR+LF) and the second input is FC+BL+BR, then the output
will be in 5.1, with the channels in the following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
first input, b1 is the first channel of the second input).

On the other hand, if both input are in stereo, the output channels will be in the default order: a1, a2, b1,
b2, and the channel layout will be arbitrarily set to 4.0, which may or may not be the expected value.

All inputs must have the same sample rate, and format.

If inputs do not have the same duration, the output will stop with the shortest.

7.22.1 Examples# TOC

Merge two mono files into a stereo stream:

amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge

Multiple merges assuming 1 video stream and 6 audio streams in input.mkv:

ffmpeg -i input.mkv -filter_complex "[0:1][0:2][0:3][0:4][0:5][0:6] amerge=inputs=6" -c:a pcm_s16le output.mkv

7.23 amix# TOC

Mixes multiple audio inputs into a single output.

Note that this filter only supports float samples (the amerge and pan audio filters support many formats).
If the amix input has integer samples then aresample will be automatically inserted to perform the
conversion to float samples.

For example

ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT

will mix 3 input audio streams to a single output with the same duration as the first input and a dropout
transition time of 3 seconds.

It accepts the following parameters:

inputs

The number of inputs. If unspecified, it defaults to 2.

duration

How to determine the end-of-stream.

longest

The duration of the longest input. (default)

shortest

The duration of the shortest input.

first

The duration of the first input.

dropout_transition

The transition time, in seconds, for volume renormalization when an input stream ends. The default
value is 2 seconds.

weights

Specify weight of each input audio stream as sequence. Each weight is separated by space. By default
all inputs have same weight.

7.24 anequalizer# TOC

High-order parametric multiband equalizer for each channel.

It accepts the following parameters:

params

This option string is in format: "cchn f=cf w=w g=g t=f | ..." Each equalizer band is separated by ’|’.

chn

Set channel number to which equalization will be applied. If input doesn’t have that channel the
entry is ignored.

f

Set central frequency for band. If input doesn’t have that frequency the entry is ignored.

w

Set band width in hertz.

g

Set band gain in dB.

t

Set filter type for band, optional, can be:

‘0’

Butterworth, this is default.

‘1’

Chebyshev type 1.

‘2’

Chebyshev type 2.

curves

With this option activated frequency response of anequalizer is displayed in video stream.

size

Set video stream size. Only useful if curves option is activated.

mgain

Set max gain that will be displayed. Only useful if curves option is activated. Setting this to a
reasonable value makes it possible to display gain which is derived from neighbour bands which are
too close to each other and thus produce higher gain when both are activated.

fscale

Set frequency scale used to draw frequency response in video output. Can be linear or logarithmic.
Default is logarithmic.

colors

Set color for each channel curve which is going to be displayed in video stream. This is list of color
names separated by space or by ’|’. Unrecognised or missing colors will be replaced by white color.

7.24.1 Examples# TOC

Lower gain by 10 of central frequency 200Hz and width 100 Hz for first 2 channels using Chebyshev
type 1 filter:

anequalizer=c0 f=200 w=100 g=-10 t=1|c1 f=200 w=100 g=-10 t=1

7.24.2 Commands# TOC

This filter supports the following commands:

change

Alter existing filter parameters. Syntax for the commands is : "fN|f=freq|w=width|g=gain"

fN is existing filter number, starting from 0, if no such filter is available error is returned. freq set new
frequency parameter. width set new width parameter in herz. gain set new gain parameter in dB.

Full filter invocation with asendcmd may look like this: asendcmd=c=’4.0 anequalizer change
0|f=200|w=50|g=1’,anequalizer=...

7.25 anull# TOC

Pass the audio source unchanged to the output.

7.26 apad# TOC

Pad the end of an audio stream with silence.

This can be used together with ffmpeg -shortest to extend audio streams to the same length as the
video stream.

A description of the accepted options follows.

packet_size

Set silence packet size. Default value is 4096.

pad_len

Set the number of samples of silence to add to the end. After the value is reached, the stream is
terminated. This option is mutually exclusive with whole_len.

whole_len

Set the minimum total number of samples in the output audio stream. If the value is longer than the
input audio length, silence is added to the end, until the value is reached. This option is mutually
exclusive with pad_len.

If neither the pad_len nor the whole_len option is set, the filter will add silence to the end of the
input stream indefinitely.

7.26.1 Examples# TOC

Add 1024 samples of silence to the end of the input:

apad=pad_len=1024

Make sure the audio output will contain at least 10000 samples, pad the input with silence if required:

apad=whole_len=10000

Use ffmpeg to pad the audio input with silence, so that the video stream will always result the
shortest and will be converted until the end in the output file when using the shortest option:

ffmpeg -i VIDEO -i AUDIO -filter_complex "[1:0]apad" -shortest OUTPUT

7.27 aphaser# TOC

Add a phasing effect to the input audio.

A phaser filter creates series of peaks and troughs in the frequency spectrum. The position of the peaks
and troughs are modulated so that they vary over time, creating a sweeping effect.

A description of the accepted parameters follows.

in_gain

Set input gain. Default is 0.4.

out_gain

Set output gain. Default is 0.74

delay

Set delay in milliseconds. Default is 3.0.

decay

Set decay. Default is 0.4.

speed

Set modulation speed in Hz. Default is 0.5.

type

Set modulation type. Default is triangular.

It accepts the following values:

‘triangular, t’
‘sinusoidal, s’

7.28 apulsator# TOC

Audio pulsator is something between an autopanner and a tremolo. But it can produce funny stereo effects
as well. Pulsator changes the volume of the left and right channel based on a LFO (low frequency
oscillator) with different waveforms and shifted phases. This filter have the ability to define an offset
between left and right channel. An offset of 0 means that both LFO shapes match each other. The left and
right channel are altered equally - a conventional tremolo. An offset of 50% means that the shape of the
right channel is exactly shifted in phase (or moved backwards about half of the frequency) - pulsator acts
as an autopanner. At 1 both curves match again. Every setting in between moves the phase shift gapless
between all stages and produces some "bypassing" sounds with sine and triangle waveforms. The more
you set the offset near 1 (starting from the 0.5) the faster the signal passes from the left to the right
speaker.

The filter accepts the following options:

level_in

Set input gain. By default it is 1. Range is [0.015625 - 64].

level_out

Set output gain. By default it is 1. Range is [0.015625 - 64].

mode

Set waveform shape the LFO will use. Can be one of: sine, triangle, square, sawup or sawdown.
Default is sine.

amount

Set modulation. Define how much of original signal is affected by the LFO.

offset_l

Set left channel offset. Default is 0. Allowed range is [0 - 1].

offset_r

Set right channel offset. Default is 0.5. Allowed range is [0 - 1].

width

Set pulse width. Default is 1. Allowed range is [0 - 2].

timing

Set possible timing mode. Can be one of: bpm, ms or hz. Default is hz.

bpm

Set bpm. Default is 120. Allowed range is [30 - 300]. Only used if timing is set to bpm.

ms

Set ms. Default is 500. Allowed range is [10 - 2000]. Only used if timing is set to ms.

hz

Set frequency in Hz. Default is 2. Allowed range is [0.01 - 100]. Only used if timing is set to hz.

7.29 aresample# TOC

Resample the input audio to the specified parameters, using the libswresample library. If none are
specified then the filter will automatically convert between its input and output.

This filter is also able to stretch/squeeze the audio data to make it match the timestamps or to inject silence
/ cut out audio to make it match the timestamps, do a combination of both or do neither.

The filter accepts the syntax [sample_rate:]resampler_options, where sample_rate expresses a sample rate
and resampler_options is a list of key=value pairs, separated by ":". See the
(ffmpeg-resampler)"Resampler Options" section in the ffmpeg-resampler(1) manual for the complete list
of supported options.

7.29.1 Examples# TOC

Resample the input audio to 44100Hz:

aresample=44100

Stretch/squeeze samples to the given timestamps, with a maximum of 1000 samples per second
compensation:

aresample=async=1000

7.30 areverse# TOC

Reverse an audio clip.

Warning: This filter requires memory to buffer the entire clip, so trimming is suggested.

7.30.1 Examples# TOC

Take the first 5 seconds of a clip, and reverse it.

atrim=end=5,areverse

7.31 asetnsamples# TOC

Set the number of samples per each output audio frame.

The last output packet may contain a different number of samples, as the filter will flush all the remaining
samples when the input audio signals its end.

The filter accepts the following options:

nb_out_samples, n

Set the number of frames per each output audio frame. The number is intended as the number of
samples per each channel. Default value is 1024.

pad, p

If set to 1, the filter will pad the last audio frame with zeroes, so that the last frame will contain the
same number of samples as the previous ones. Default value is 1.

For example, to set the number of per-frame samples to 1234 and disable padding for the last frame, use:

asetnsamples=n=1234:p=0

7.32 asetrate# TOC

Set the sample rate without altering the PCM data. This will result in a change of speed and pitch.

The filter accepts the following options:

sample_rate, r

Set the output sample rate. Default is 44100 Hz.

7.33 ashowinfo# TOC

Show a line containing various information for each input audio frame. The input audio is not modified.

The shown line contains a sequence of key/value pairs of the form key:value.

The following values are shown in the output:

n

The (sequential) number of the input frame, starting from 0.

pts

The presentation timestamp of the input frame, in time base units; the time base depends on the filter
input pad, and is usually 1/sample_rate.

pts_time

The presentation timestamp of the input frame in seconds.

pos

position of the frame in the input stream, -1 if this information in unavailable and/or meaningless (for
example in case of synthetic audio)

fmt

The sample format.

chlayout

The channel layout.

rate

The sample rate for the audio frame.

nb_samples

The number of samples (per channel) in the frame.

checksum

The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio, the data is
treated as if all the planes were concatenated.

plane_checksums

A list of Adler-32 checksums for each data plane.

7.34 astats# TOC

Display time domain statistical information about the audio channels. Statistics are calculated and
displayed for each audio channel and, where applicable, an overall figure is also given.

It accepts the following option:

length

Short window length in seconds, used for peak and trough RMS measurement. Default is 0.05 (50
milliseconds). Allowed range is [0.01 - 10].

metadata

Set metadata injection. All the metadata keys are prefixed with lavfi.astats.X, where X is
channel number starting from 1 or string Overall. Default is disabled.

Available keys for each channel are: DC_offset Min_level Max_level Min_difference
Max_difference Mean_difference RMS_difference Peak_level RMS_peak RMS_trough Crest_factor
Flat_factor Peak_count Bit_depth Dynamic_range

and for Overall: DC_offset Min_level Max_level Min_difference Max_difference Mean_difference
RMS_difference Peak_level RMS_level RMS_peak RMS_trough Flat_factor Peak_count Bit_depth
Number_of_samples

For example full key look like this lavfi.astats.1.DC_offset or this
lavfi.astats.Overall.Peak_count.

For description what each key means read below.

reset

Set number of frame after which stats are going to be recalculated. Default is disabled.

A description of each shown parameter follows:

DC offset

Mean amplitude displacement from zero.

Min level

Minimal sample level.

Max level

Maximal sample level.

Min difference

Minimal difference between two consecutive samples.

Max difference

Maximal difference between two consecutive samples.

Mean difference

Mean difference between two consecutive samples. The average of each difference between two
consecutive samples.

RMS difference

Root Mean Square difference between two consecutive samples.

Peak level dB
RMS level dB

Standard peak and RMS level measured in dBFS.

RMS peak dB
RMS trough dB

Peak and trough values for RMS level measured over a short window.

Crest factor

Standard ratio of peak to RMS level (note: not in dB).

Flat factor

Flatness (i.e. consecutive samples with the same value) of the signal at its peak levels (i.e. either Min
level or Max level).

Peak count

Number of occasions (not the number of samples) that the signal attained either Min level or Max
level.

Bit depth

Overall bit depth of audio. Number of bits used for each sample.

Dynamic range

Measured dynamic range of audio in dB.

7.35 atempo# TOC

Adjust audio tempo.

The filter accepts exactly one parameter, the audio tempo. If not specified then the filter will assume
nominal 1.0 tempo. Tempo must be in the [0.5, 100.0] range.

Note that tempo greater than 2 will skip some samples rather than blend them in. If for any reason this is a
concern it is always possible to daisy-chain several instances of atempo to achieve the desired product
tempo.

7.35.1 Examples# TOC

Slow down audio to 80% tempo:

atempo=0.8

To speed up audio to 300% tempo:

atempo=3

To speed up audio to 300% tempo by daisy-chaining two atempo instances:

atempo=sqrt(3),atempo=sqrt(3)

7.36 atrim# TOC

Trim the input so that the output contains one continuous subpart of the input.

It accepts the following parameters:

start

Timestamp (in seconds) of the start of the section to keep. I.e. the audio sample with the timestamp
start will be the first sample in the output.

end

Specify time of the first audio sample that will be dropped, i.e. the audio sample immediately
preceding the one with the timestamp end will be the last sample in the output.

start_pts

Same as start, except this option sets the start timestamp in samples instead of seconds.

end_pts

Same as end, except this option sets the end timestamp in samples instead of seconds.

duration

The maximum duration of the output in seconds.

start_sample

The number of the first sample that should be output.

end_sample

The number of the first sample that should be dropped.

start, end, and duration are expressed as time duration specifications; see (ffmpeg-utils)the Time
duration section in the ffmpeg-utils(1) manual.

Note that the first two sets of the start/end options and the duration option look at the frame timestamp,
while the _sample options simply count the samples that pass through the filter. So start/end_pts and
start/end_sample will give different results when the timestamps are wrong, inexact or do not start at zero.
Also note that this filter does not modify the timestamps. If you wish to have the output timestamps start at
zero, insert the asetpts filter after the atrim filter.

If multiple start or end options are set, this filter tries to be greedy and keep all samples that match at least
one of the specified constraints. To keep only the part that matches all the constraints at once, chain
multiple atrim filters.

The defaults are such that all the input is kept. So it is possible to set e.g. just the end values to keep
everything before the specified time.

Examples:

Drop everything except the second minute of input:

ffmpeg -i INPUT -af atrim=60:120

Keep only the first 1000 samples:

ffmpeg -i INPUT -af atrim=end_sample=1000

7.37 bandpass# TOC

Apply a two-pole Butterworth band-pass filter with central frequency frequency, and (3dB-point)
band-width width. The csg option selects a constant skirt gain (peak gain = Q) instead of the default:
constant 0dB peak gain. The filter roll off at 6dB per octave (20dB per decade).

The filter accepts the following options:

frequency, f

Set the filter’s central frequency. Default is 3000.

csg

Constant skirt gain if set to 1. Defaults to 0.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units.

channels, c

Specify which channels to filter, by default all available are filtered.

7.37.1 Commands# TOC

This filter supports the following commands:

frequency, f

Change bandpass frequency. Syntax for the command is : "frequency"

width_type, t

Change bandpass width_type. Syntax for the command is : "width_type"

width, w

Change bandpass width. Syntax for the command is : "width"

7.38 bandreject# TOC

Apply a two-pole Butterworth band-reject filter with central frequency frequency, and (3dB-point)
band-width width. The filter roll off at 6dB per octave (20dB per decade).

The filter accepts the following options:

frequency, f

Set the filter’s central frequency. Default is 3000.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units.

channels, c

Specify which channels to filter, by default all available are filtered.

7.38.1 Commands# TOC

This filter supports the following commands:

frequency, f

Change bandreject frequency. Syntax for the command is : "frequency"

width_type, t

Change bandreject width_type. Syntax for the command is : "width_type"

width, w

Change bandreject width. Syntax for the command is : "width"

7.39 bass, lowshelf# TOC

Boost or cut the bass (lower) frequencies of the audio using a two-pole shelving filter with a response
similar to that of a standard hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).

The filter accepts the following options:

gain, g

Give the gain at 0 Hz. Its useful range is about -20 (for a large cut) to +20 (for a large boost). Beware
of clipping when using a positive gain.

frequency, f

Set the filter’s central frequency and so can be used to extend or reduce the frequency range to be
boosted or cut. The default value is 100 Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Determine how steep is the filter’s shelf transition.

channels, c

Specify which channels to filter, by default all available are filtered.

7.39.1 Commands# TOC

This filter supports the following commands:

frequency, f

Change bass frequency. Syntax for the command is : "frequency"

width_type, t

Change bass width_type. Syntax for the command is : "width_type"

width, w

Change bass width. Syntax for the command is : "width"

gain, g

Change bass gain. Syntax for the command is : "gain"

7.40 biquad# TOC

Apply a biquad IIR filter with the given coefficients. Where b0, b1, b2 and a0, a1, a2 are the numerator
and denominator coefficients respectively. and channels, c specify which channels to filter, by default all
available are filtered.

7.40.1 Commands# TOC

This filter supports the following commands:

a0
a1
a2
b0
b1
b2

Change biquad parameter. Syntax for the command is : "value"

7.41 bs2b# TOC

Bauer stereo to binaural transformation, which improves headphone listening of stereo audio records.

To enable compilation of this filter you need to configure FFmpeg with --enable-libbs2b.

It accepts the following parameters:

profile

Pre-defined crossfeed level.

default

Default level (fcut=700, feed=50).

cmoy

Chu Moy circuit (fcut=700, feed=60).

jmeier

Jan Meier circuit (fcut=650, feed=95).

fcut

Cut frequency (in Hz).

feed

Feed level (in Hz).

7.42 channelmap# TOC

Remap input channels to new locations.

It accepts the following parameters:

map

Map channels from input to output. The argument is a ’|’-separated list of mappings, each in the
in_channel-out_channel or in_channel form. in_channel can be either the name of the input
channel (e.g. FL for front left) or its index in the input channel layout. out_channel is the name of the
output channel or its index in the output channel layout. If out_channel is not given then it is
implicitly an index, starting with zero and increasing by one for each mapping.

channel_layout

The channel layout of the output stream.

If no mapping is present, the filter will implicitly map input channels to output channels, preserving
indices.

7.42.1 Examples# TOC

For example, assuming a 5.1+downmix input MOV file,

ffmpeg -i in.mov -filter ’channelmap=map=DL-FL|DR-FR’ out.wav

will create an output WAV file tagged as stereo from the downmix channels of the input.

To fix a 5.1 WAV improperly encoded in AAC’s native channel order

ffmpeg -i in.wav -filter ’channelmap=1|2|0|5|3|4:5.1’ out.wav

7.43 channelsplit# TOC

Split each channel from an input audio stream into a separate output stream.

It accepts the following parameters:

channel_layout

The channel layout of the input stream. The default is "stereo".

channels

A channel layout describing the channels to be extracted as separate output streams or "all" to extract
each input channel as a separate stream. The default is "all".

Choosing channels not present in channel layout in the input will result in an error.

7.43.1 Examples# TOC

For example, assuming a stereo input MP3 file,

ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv

will create an output Matroska file with two audio streams, one containing only the left channel and
the other the right channel.

Split a 5.1 WAV file into per-channel files:

ffmpeg -i in.wav -filter_complex
’channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]’
-map ’[FL]’ front_left.wav -map ’[FR]’ front_right.wav -map ’[FC]’
front_center.wav -map ’[LFE]’ lfe.wav -map ’[SL]’ side_left.wav -map ’[SR]’
side_right.wav

Extract only LFE from a 5.1 WAV file:

ffmpeg -i in.wav -filter_complex ’channelsplit=channel_layout=5.1:channels=LFE[LFE]’
-map ’[LFE]’ lfe.wav

7.44 chorus# TOC

Add a chorus effect to the audio.

Can make a single vocal sound like a chorus, but can also be applied to instrumentation.

Chorus resembles an echo effect with a short delay, but whereas with echo the delay is constant, with
chorus, it is varied using using sinusoidal or triangular modulation. The modulation depth defines the
range the modulated delay is played before or after the delay. Hence the delayed sound will sound slower
or faster, that is the delayed sound tuned around the original one, like in a chorus where some vocals are
slightly off key.

It accepts the following parameters:

in_gain

Set input gain. Default is 0.4.

out_gain

Set output gain. Default is 0.4.

delays

Set delays. A typical delay is around 40ms to 60ms.

decays

Set decays.

speeds

Set speeds.

depths

Set depths.

7.44.1 Examples# TOC

A single delay:

chorus=0.7:0.9:55:0.4:0.25:2

Two delays:

chorus=0.6:0.9:50|60:0.4|0.32:0.25|0.4:2|1.3

Fuller sounding chorus with three delays:

chorus=0.5:0.9:50|60|40:0.4|0.32|0.3:0.25|0.4|0.3:2|2.3|1.3

7.45 compand# TOC

Compress or expand the audio’s dynamic range.

It accepts the following parameters:

attacks
decays

A list of times in seconds for each channel over which the instantaneous level of the input signal is
averaged to determine its volume. attacks refers to increase of volume and decays refers to decrease
of volume. For most situations, the attack time (response to the audio getting louder) should be
shorter than the decay time, because the human ear is more sensitive to sudden loud audio than

sudden soft audio. A typical value for attack is 0.3 seconds and a typical value for decay is 0.8
seconds. If specified number of attacks & decays is lower than number of channels, the last set
attack/decay will be used for all remaining channels.

points

A list of points for the transfer function, specified in dB relative to the maximum possible signal
amplitude. Each key points list must be defined using the following syntax:
x0/y0|x1/y1|x2/y2|.... or x0/y0 x1/y1 x2/y2

The input values must be in strictly increasing order but the transfer function does not have to be
monotonically rising. The point 0/0 is assumed but may be overridden (by 0/out-dBn). Typical
values for the transfer function are -70/-70|-60/-20|1/0.

soft-knee

Set the curve radius in dB for all joints. It defaults to 0.01.

gain

Set the additional gain in dB to be applied at all points on the transfer function. This allows for easy
adjustment of the overall gain. It defaults to 0.

volume

Set an initial volume, in dB, to be assumed for each channel when filtering starts. This permits the
user to supply a nominal level initially, so that, for example, a very large gain is not applied to initial
signal levels before the companding has begun to operate. A typical value for audio which is initially
quiet is -90 dB. It defaults to 0.

delay

Set a delay, in seconds. The input audio is analyzed immediately, but audio is delayed before being
fed to the volume adjuster. Specifying a delay approximately equal to the attack/decay times allows
the filter to effectively operate in predictive rather than reactive mode. It defaults to 0.

7.45.1 Examples# TOC

Make music with both quiet and loud passages suitable for listening to in a noisy environment:

compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2

Another example for audio with whisper and explosion parts:

compand=0|0:1|1:-90/-900|-70/-70|-30/-9|0/-3:6:0:0:0

A noise gate for when the noise is at a lower level than the signal:

compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1

Here is another noise gate, this time for when the noise is at a higher level than the signal (making it,
in some ways, similar to squelch):

compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1

2:1 compression starting at -6dB:

compand=points=-80/-80|-6/-6|0/-3.8|20/3.5

2:1 compression starting at -9dB:

compand=points=-80/-80|-9/-9|0/-5.3|20/2.9

2:1 compression starting at -12dB:

compand=points=-80/-80|-12/-12|0/-6.8|20/1.9

2:1 compression starting at -18dB:

compand=points=-80/-80|-18/-18|0/-9.8|20/0.7

3:1 compression starting at -15dB:

compand=points=-80/-80|-15/-15|0/-10.8|20/-5.2

Compressor/Gate:

compand=points=-80/-105|-62/-80|-15.4/-15.4|0/-12|20/-7.6

Expander:

compand=attacks=0:points=-80/-169|-54/-80|-49.5/-64.6|-41.1/-41.1|-25.8/-15|-10.8/-4.5|0/0|20/8.3

Hard limiter at -6dB:

compand=attacks=0:points=-80/-80|-6/-6|20/-6

Hard limiter at -12dB:

compand=attacks=0:points=-80/-80|-12/-12|20/-12

Hard noise gate at -35 dB:

compand=attacks=0:points=-80/-115|-35.1/-80|-35/-35|20/20

Soft limiter:

compand=attacks=0:points=-80/-80|-12.4/-12.4|-6/-8|0/-6.8|20/-2.8

7.46 compensationdelay# TOC

Compensation Delay Line is a metric based delay to compensate differing positions of microphones or
speakers.

For example, you have recorded guitar with two microphones placed in different location. Because the
front of sound wave has fixed speed in normal conditions, the phasing of microphones can vary and
depends on their location and interposition. The best sound mix can be achieved when these microphones
are in phase (synchronized). Note that distance of ~30 cm between microphones makes one microphone to
capture signal in antiphase to another microphone. That makes the final mix sounding moody. This filter
helps to solve phasing problems by adding different delays to each microphone track and make them
synchronized.

The best result can be reached when you take one track as base and synchronize other tracks one by one
with it. Remember that synchronization/delay tolerance depends on sample rate, too. Higher sample rates
will give more tolerance.

It accepts the following parameters:

mm

Set millimeters distance. This is compensation distance for fine tuning. Default is 0.

cm

Set cm distance. This is compensation distance for tightening distance setup. Default is 0.

m

Set meters distance. This is compensation distance for hard distance setup. Default is 0.

dry

Set dry amount. Amount of unprocessed (dry) signal. Default is 0.

wet

Set wet amount. Amount of processed (wet) signal. Default is 1.

temp

Set temperature degree in Celsius. This is the temperature of the environment. Default is 20.

7.47 crossfeed# TOC

Apply headphone crossfeed filter.

Crossfeed is the process of blending the left and right channels of stereo audio recording. It is mainly used
to reduce extreme stereo separation of low frequencies.

The intent is to produce more speaker like sound to the listener.

The filter accepts the following options:

strength

Set strength of crossfeed. Default is 0.2. Allowed range is from 0 to 1. This sets gain of low shelf
filter for side part of stereo image. Default is -6dB. Max allowed is -30db when strength is set to 1.

range

Set soundstage wideness. Default is 0.5. Allowed range is from 0 to 1. This sets cut off frequency of
low shelf filter. Default is cut off near 1550 Hz. With range set to 1 cut off frequency is set to 2100
Hz.

level_in

Set input gain. Default is 0.9.

level_out

Set output gain. Default is 1.

7.48 crystalizer# TOC

Simple algorithm to expand audio dynamic range.

The filter accepts the following options:

i

Sets the intensity of effect (default: 2.0). Must be in range between 0.0 (unchanged sound) to 10.0
(maximum effect).

c

Enable clipping. By default is enabled.

7.49 dcshift# TOC

Apply a DC shift to the audio.

This can be useful to remove a DC offset (caused perhaps by a hardware problem in the recording chain)
from the audio. The effect of a DC offset is reduced headroom and hence volume. The astats filter can be
used to determine if a signal has a DC offset.

shift

Set the DC shift, allowed range is [-1, 1]. It indicates the amount to shift the audio.

limitergain

Optional. It should have a value much less than 1 (e.g. 0.05 or 0.02) and is used to prevent clipping.

7.50 drmeter# TOC

Measure audio dynamic range.

DR values of 14 and higher is found in very dynamic material. DR of 8 to 13 is found in transition
material. And anything less that 8 have very poor dynamics and is very compressed.

The filter accepts the following options:

length

Set window length in seconds used to split audio into segments of equal length. Default is 3 seconds.

7.51 dynaudnorm# TOC

Dynamic Audio Normalizer.

This filter applies a certain amount of gain to the input audio in order to bring its peak magnitude to a
target level (e.g. 0 dBFS). However, in contrast to more "simple" normalization algorithms, the Dynamic
Audio Normalizer *dynamically* re-adjusts the gain factor to the input audio. This allows for applying
extra gain to the "quiet" sections of the audio while avoiding distortions or clipping the "loud" sections. In
other words: The Dynamic Audio Normalizer will "even out" the volume of quiet and loud sections, in the
sense that the volume of each section is brought to the same target level. Note, however, that the Dynamic
Audio Normalizer achieves this goal *without* applying "dynamic range compressing". It will retain
100% of the dynamic range *within* each section of the audio file.

f

Set the frame length in milliseconds. In range from 10 to 8000 milliseconds. Default is 500
milliseconds. The Dynamic Audio Normalizer processes the input audio in small chunks, referred to
as frames. This is required, because a peak magnitude has no meaning for just a single sample value.
Instead, we need to determine the peak magnitude for a contiguous sequence of sample values. While
a "standard" normalizer would simply use the peak magnitude of the complete file, the Dynamic
Audio Normalizer determines the peak magnitude individually for each frame. The length of a frame
is specified in milliseconds. By default, the Dynamic Audio Normalizer uses a frame length of 500
milliseconds, which has been found to give good results with most files. Note that the exact frame
length, in number of samples, will be determined automatically, based on the sampling rate of the
individual input audio file.

g

Set the Gaussian filter window size. In range from 3 to 301, must be odd number. Default is 31.
Probably the most important parameter of the Dynamic Audio Normalizer is the window size of
the Gaussian smoothing filter. The filter’s window size is specified in frames, centered around the
current frame. For the sake of simplicity, this must be an odd number. Consequently, the default
value of 31 takes into account the current frame, as well as the 15 preceding frames and the 15
subsequent frames. Using a larger window results in a stronger smoothing effect and thus in less gain
variation, i.e. slower gain adaptation. Conversely, using a smaller window results in a weaker
smoothing effect and thus in more gain variation, i.e. faster gain adaptation. In other words, the more
you increase this value, the more the Dynamic Audio Normalizer will behave like a "traditional"
normalization filter. On the contrary, the more you decrease this value, the more the Dynamic Audio
Normalizer will behave like a dynamic range compressor.

p

Set the target peak value. This specifies the highest permissible magnitude level for the normalized
audio input. This filter will try to approach the target peak magnitude as closely as possible, but at the
same time it also makes sure that the normalized signal will never exceed the peak magnitude. A
frame’s maximum local gain factor is imposed directly by the target peak magnitude. The default
value is 0.95 and thus leaves a headroom of 5%*. It is not recommended to go above this value.

m

Set the maximum gain factor. In range from 1.0 to 100.0. Default is 10.0. The Dynamic Audio
Normalizer determines the maximum possible (local) gain factor for each input frame, i.e. the
maximum gain factor that does not result in clipping or distortion. The maximum gain factor is
determined by the frame’s highest magnitude sample. However, the Dynamic Audio Normalizer
additionally bounds the frame’s maximum gain factor by a predetermined (global) maximum gain
factor. This is done in order to avoid excessive gain factors in "silent" or almost silent frames. By
default, the maximum gain factor is 10.0, For most inputs the default value should be sufficient and it
usually is not recommended to increase this value. Though, for input with an extremely low overall
volume level, it may be necessary to allow even higher gain factors. Note, however, that the Dynamic
Audio Normalizer does not simply apply a "hard" threshold (i.e. cut off values above the threshold).
Instead, a "sigmoid" threshold function will be applied. This way, the gain factors will smoothly
approach the threshold value, but never exceed that value.

r

Set the target RMS. In range from 0.0 to 1.0. Default is 0.0 - disabled. By default, the Dynamic
Audio Normalizer performs "peak" normalization. This means that the maximum local gain factor for
each frame is defined (only) by the frame’s highest magnitude sample. This way, the samples can be
amplified as much as possible without exceeding the maximum signal level, i.e. without clipping.
Optionally, however, the Dynamic Audio Normalizer can also take into account the frame’s root
mean square, abbreviated RMS. In electrical engineering, the RMS is commonly used to determine
the power of a time-varying signal. It is therefore considered that the RMS is a better approximation
of the "perceived loudness" than just looking at the signal’s peak magnitude. Consequently, by
adjusting all frames to a constant RMS value, a uniform "perceived loudness" can be established. If a

target RMS value has been specified, a frame’s local gain factor is defined as the factor that would
result in exactly that RMS value. Note, however, that the maximum local gain factor is still restricted by
the frame’s highest magnitude sample, in order to prevent clipping.

n

Enable channels coupling. By default is enabled. By default, the Dynamic Audio Normalizer will
amplify all channels by the same amount. This means the same gain factor will be applied to all
channels, i.e. the maximum possible gain factor is determined by the "loudest" channel. However, in
some recordings, it may happen that the volume of the different channels is uneven, e.g. one channel
may be "quieter" than the other one(s). In this case, this option can be used to disable the channel
coupling. This way, the gain factor will be determined independently for each channel, depending
only on the individual channel’s highest magnitude sample. This allows for harmonizing the volume
of the different channels.

c

Enable DC bias correction. By default is disabled. An audio signal (in the time domain) is a sequence
of sample values. In the Dynamic Audio Normalizer these sample values are represented in the -1.0
to 1.0 range, regardless of the original input format. Normally, the audio signal, or "waveform",
should be centered around the zero point. That means if we calculate the mean value of all samples in
a file, or in a single frame, then the result should be 0.0 or at least very close to that value. If,
however, there is a significant deviation of the mean value from 0.0, in either positive or negative
direction, this is referred to as a DC bias or DC offset. Since a DC bias is clearly undesirable, the
Dynamic Audio Normalizer provides optional DC bias correction. With DC bias correction enabled,
the Dynamic Audio Normalizer will determine the mean value, or "DC correction" offset, of each
input frame and subtract that value from all of the frame’s sample values which ensures those
samples are centered around 0.0 again. Also, in order to avoid "gaps" at the frame boundaries, the DC
correction offset values will be interpolated smoothly between neighbouring frames.

b

Enable alternative boundary mode. By default is disabled. The Dynamic Audio Normalizer takes into
account a certain neighbourhood around each frame. This includes the preceding frames as well as
the subsequent frames. However, for the "boundary" frames, located at the very beginning and at the
very end of the audio file, not all neighbouring frames are available. In particular, for the first few
frames in the audio file, the preceding frames are not known. And, similarly, for the last few frames
in the audio file, the subsequent frames are not known. Thus, the question arises which gain factors
should be assumed for the missing frames in the "boundary" region. The Dynamic Audio Normalizer
implements two modes to deal with this situation. The default boundary mode assumes a gain factor
of exactly 1.0 for the missing frames, resulting in a smooth "fade in" and "fade out" at the beginning
and at the end of the input, respectively.

s

Set the compress factor. In range from 0.0 to 30.0. Default is 0.0. By default, the Dynamic Audio
Normalizer does not apply "traditional" compression. This means that signal peaks will not be pruned
and thus the full dynamic range will be retained within each local neighbourhood. However, in some

cases it may be desirable to combine the Dynamic Audio Normalizer’s normalization algorithm with
a more "traditional" compression. For this purpose, the Dynamic Audio Normalizer provides an optional
compression (thresholding) function. If (and only if) the compression feature is enabled, all input frames
will be processed by a soft knee thresholding function prior to the actual normalization process. Put
simply, the thresholding function is going to prune all samples whose magnitude exceeds a certain
threshold value. However, the Dynamic Audio Normalizer does not simply apply a fixed threshold value.
Instead, the threshold value will be adjusted for each individual frame. In general, smaller parameters
result in stronger compression, and vice versa. Values below 3.0 are not recommended, because audible
distortion may appear.

7.52 earwax# TOC

Make audio easier to listen to on headphones.

This filter adds ‘cues’ to 44.1kHz stereo (i.e. audio CD format) audio so that when listened to on
headphones the stereo image is moved from inside your head (standard for headphones) to outside and in
front of the listener (standard for speakers).

Ported from SoX.

7.53 equalizer# TOC

Apply a two-pole peaking equalisation (EQ) filter. With this filter, the signal-level at and around a
selected frequency can be increased or decreased, whilst (unlike bandpass and bandreject filters) that at all
other frequencies is unchanged.

In order to produce complex equalisation curves, this filter can be given several times, each with a
different central frequency.

The filter accepts the following options:

frequency, f

Set the filter’s central frequency in Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units.

gain, g

Set the required gain or attenuation in dB. Beware of clipping when using a positive gain.

channels, c

Specify which channels to filter, by default all available are filtered.

7.53.1 Examples# TOC

Attenuate 10 dB at 1000 Hz, with a bandwidth of 200 Hz:

equalizer=f=1000:t=h:width=200:g=-10

Apply 2 dB gain at 1000 Hz with Q 1 and attenuate 5 dB at 100 Hz with Q 2:

equalizer=f=1000:t=q:w=1:g=2,equalizer=f=100:t=q:w=2:g=-5

7.53.2 Commands# TOC

This filter supports the following commands:

frequency, f

Change equalizer frequency. Syntax for the command is : "frequency"

width_type, t

Change equalizer width_type. Syntax for the command is : "width_type"

width, w

Change equalizer width. Syntax for the command is : "width"

gain, g

Change equalizer gain. Syntax for the command is : "gain"

7.54 extrastereo# TOC

Linearly increases the difference between left and right channels which adds some sort of "live" effect to
playback.

The filter accepts the following options:

m

Sets the difference coefficient (default: 2.5). 0.0 means mono sound (average of both channels), with
1.0 sound will be unchanged, with -1.0 left and right channels will be swapped.

c

Enable clipping. By default is enabled.

7.55 firequalizer# TOC

Apply FIR Equalization using arbitrary frequency response.

The filter accepts the following option:

gain

Set gain curve equation (in dB). The expression can contain variables:

f

the evaluated frequency

sr

sample rate

ch

channel number, set to 0 when multichannels evaluation is disabled

chid

channel id, see libavutil/channel_layout.h, set to the first channel id when multichannels
evaluation is disabled

chs

number of channels

chlayout

channel_layout, see libavutil/channel_layout.h

and functions:

gain_interpolate(f)

interpolate gain on frequency f based on gain_entry

cubic_interpolate(f)

same as gain_interpolate, but smoother

This option is also available as command. Default is gain_interpolate(f).

gain_entry

Set gain entry for gain_interpolate function. The expression can contain functions:

entry(f, g)

store gain entry at frequency f with value g

This option is also available as command.

delay

Set filter delay in seconds. Higher value means more accurate. Default is 0.01.

accuracy

Set filter accuracy in Hz. Lower value means more accurate. Default is 5.

wfunc

Set window function. Acceptable values are:

rectangular

rectangular window, useful when gain curve is already smooth

hann

hann window (default)

hamming

hamming window

blackman

blackman window

nuttall3

3-terms continuous 1st derivative nuttall window

mnuttall3

minimum 3-terms discontinuous nuttall window

nuttall

4-terms continuous 1st derivative nuttall window

bnuttall

minimum 4-terms discontinuous nuttall (blackman-nuttall) window

bharris

blackman-harris window

tukey

tukey window

fixed

If enabled, use fixed number of audio samples. This improves speed when filtering with large delay.
Default is disabled.

multi

Enable multichannels evaluation on gain. Default is disabled.

zero_phase

Enable zero phase mode by subtracting timestamp to compensate delay. Default is disabled.

scale

Set scale used by gain. Acceptable values are:

linlin

linear frequency, linear gain

linlog

linear frequency, logarithmic (in dB) gain (default)

loglin

logarithmic (in octave scale where 20 Hz is 0) frequency, linear gain

loglog

logarithmic frequency, logarithmic gain

dumpfile

Set file for dumping, suitable for gnuplot.

dumpscale

Set scale for dumpfile. Acceptable values are same with scale option. Default is linlog.

fft2

Enable 2-channel convolution using complex FFT. This improves speed significantly. Default is
disabled.

min_phase

Enable minimum phase impulse response. Default is disabled.

7.55.1 Examples# TOC

lowpass at 1000 Hz:

firequalizer=gain=’if(lt(f,1000), 0, -INF)’

lowpass at 1000 Hz with gain_entry:

firequalizer=gain_entry=’entry(1000,0); entry(1001, -INF)’

custom equalization:

firequalizer=gain_entry=’entry(100,0); entry(400, -4); entry(1000, -6); entry(2000, 0)’

higher delay with zero phase to compensate delay:

firequalizer=delay=0.1:fixed=on:zero_phase=on

lowpass on left channel, highpass on right channel:

firequalizer=gain=’if(eq(chid,1), gain_interpolate(f), if(eq(chid,2), gain_interpolate(1e6+f), 0))’
:gain_entry=’entry(1000, 0); entry(1001,-INF); entry(1e6+1000,0)’:multi=on

7.56 flanger# TOC

Apply a flanging effect to the audio.

The filter accepts the following options:

delay

Set base delay in milliseconds. Range from 0 to 30. Default value is 0.

depth

Set added sweep delay in milliseconds. Range from 0 to 10. Default value is 2.

regen

Set percentage regeneration (delayed signal feedback). Range from -95 to 95. Default value is 0.

width

Set percentage of delayed signal mixed with original. Range from 0 to 100. Default value is 71.

speed

Set sweeps per second (Hz). Range from 0.1 to 10. Default value is 0.5.

shape

Set swept wave shape, can be triangular or sinusoidal. Default value is sinusoidal.

phase

Set swept wave percentage-shift for multi channel. Range from 0 to 100. Default value is 25.

interp

Set delay-line interpolation, linear or quadratic. Default is linear.

7.57 haas# TOC

Apply Haas effect to audio.

Note that this makes most sense to apply on mono signals. With this filter applied to mono signals it give
some directionality and stretches its stereo image.

The filter accepts the following options:

level_in

Set input level. By default is 1, or 0dB

level_out

Set output level. By default is 1, or 0dB.

side_gain

Set gain applied to side part of signal. By default is 1.

middle_source

Set kind of middle source. Can be one of the following:

‘left’

Pick left channel.

‘right’

Pick right channel.

‘mid’

Pick middle part signal of stereo image.

‘side’

Pick side part signal of stereo image.

middle_phase

Change middle phase. By default is disabled.

left_delay

Set left channel delay. By default is 2.05 milliseconds.

left_balance

Set left channel balance. By default is -1.

left_gain

Set left channel gain. By default is 1.

left_phase

Change left phase. By default is disabled.

right_delay

Set right channel delay. By defaults is 2.12 milliseconds.

right_balance

Set right channel balance. By default is 1.

right_gain

Set right channel gain. By default is 1.

right_phase

Change right phase. By default is enabled.

7.58 hdcd# TOC

Decodes High Definition Compatible Digital (HDCD) data. A 16-bit PCM stream with embedded HDCD
codes is expanded into a 20-bit PCM stream.

The filter supports the Peak Extend and Low-level Gain Adjustment features of HDCD, and detects the
Transient Filter flag.

ffmpeg -i HDCD16.flac -af hdcd OUT24.flac

When using the filter with wav, note the default encoding for wav is 16-bit, so the resulting 20-bit stream
will be truncated back to 16-bit. Use something like -acodec pcm_s24le after the filter to get 24-bit
PCM output.

ffmpeg -i HDCD16.wav -af hdcd OUT16.wav
ffmpeg -i HDCD16.wav -af hdcd -c:a pcm_s24le OUT24.wav

The filter accepts the following options:

disable_autoconvert

Disable any automatic format conversion or resampling in the filter graph.

process_stereo

Process the stereo channels together. If target_gain does not match between channels, consider it
invalid and use the last valid target_gain.

cdt_ms

Set the code detect timer period in ms.

force_pe

Always extend peaks above -3dBFS even if PE isn’t signaled.

analyze_mode

Replace audio with a solid tone and adjust the amplitude to signal some specific aspect of the
decoding process. The output file can be loaded in an audio editor alongside the original to aid
analysis.

analyze_mode=pe:force_pe=true can be used to see all samples above the PE level.

Modes are:

‘0, off’

Disabled

‘1, lle’

Gain adjustment level at each sample

‘2, pe’

Samples where peak extend occurs

‘3, cdt’

Samples where the code detect timer is active

‘4, tgm’

Samples where the target gain does not match between channels

7.59 headphone# TOC

Apply head-related transfer functions (HRTFs) to create virtual loudspeakers around the user for binaural
listening via headphones. The HRIRs are provided via additional streams, for each channel one stereo
input stream is needed.

The filter accepts the following options:

map

Set mapping of input streams for convolution. The argument is a ’|’-separated list of channel names
in order as they are given as additional stream inputs for filter. This also specify number of input
streams. Number of input streams must be not less than number of channels in first stream plus one.

gain

Set gain applied to audio. Value is in dB. Default is 0.

type

Set processing type. Can be time or freq. time is processing audio in time domain which is slow. freq
is processing audio in frequency domain which is fast. Default is freq.

lfe

Set custom gain for LFE channels. Value is in dB. Default is 0.

size

Set size of frame in number of samples which will be processed at once. Default value is 1024.
Allowed range is from 1024 to 96000.

hrir

Set format of hrir stream. Default value is stereo. Alternative value is multich. If value is set to
stereo, number of additional streams should be greater or equal to number of input channels in first
input stream. Also each additional stream should have stereo number of channels. If value is set to
multich, number of additional streams should be exactly one. Also number of input channels of
additional stream should be equal or greater than twice number of channels of first input stream.

7.59.1 Examples# TOC

Full example using wav files as coefficients with amovie filters for 7.1 downmix, each amovie filter
use stereo file with IR coefficients as input. The files give coefficients for each position of virtual
loudspeaker:
ffmpeg -i input.wav -lavfi-complex "amovie=azi_270_ele_0_DFC.wav[sr],amovie=azi_90_ele_0_DFC.wav[sl],amovie=azi_225_ele_0_DFC.wav[br],amovie=azi_135_ele_0_DFC.wav[bl],amovie=azi_0_ele_0_DFC.wav,asplit[fc][lfe],amovie=azi_35_ele_0_DFC.wav[fl],amovie=azi_325_ele_0_DFC.wav[fr],[a:0][fl][fr][fc][lfe][bl][br][sl][sr]headphone=FL|FR|FC|LFE|BL|BR|SL|SR"
output.wav

Full example using wav files as coefficients with amovie filters for 7.1 downmix, but now in multich
hrir format.

ffmpeg -i input.wav -lavfi-complex "amovie=minp.wav[hrirs],[a:0][hrirs]headphone=map=FL|FR|FC|LFE|BL|BR|SL|SR:hrir=multich"
output.wav

7.60 highpass# TOC

Apply a high-pass filter with 3dB point frequency. The filter can be either single-pole, or double-pole (the
default). The filter roll off at 6dB per pole per octave (20dB per pole per decade).

The filter accepts the following options:

frequency, f

Set frequency in Hz. Default is 3000.

poles, p

Set number of poles. Default is 2.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units. Applies only to double-pole filter. The default
is 0.707q and gives a Butterworth response.

channels, c

Specify which channels to filter, by default all available are filtered.

7.60.1 Commands# TOC

This filter supports the following commands:

frequency, f

Change highpass frequency. Syntax for the command is : "frequency"

width_type, t

Change highpass width_type. Syntax for the command is : "width_type"

width, w

Change highpass width. Syntax for the command is : "width"

7.61 join# TOC

Join multiple input streams into one multi-channel stream.

It accepts the following parameters:

inputs

The number of input streams. It defaults to 2.

channel_layout

The desired output channel layout. It defaults to stereo.

map

Map channels from inputs to output. The argument is a ’|’-separated list of mappings, each in the
input_idx.in_channel-out_channel form. input_idx is the 0-based index of the input
stream. in_channel can be either the name of the input channel (e.g. FL for front left) or its index in
the specified input stream. out_channel is the name of the output channel.

The filter will attempt to guess the mappings when they are not specified explicitly. It does so by first
trying to find an unused matching input channel and if that fails it picks the first unused input channel.

Join 3 inputs (with properly set channel layouts):

ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT

Build a 5.1 output from 6 single-channel streams:

ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
’join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE’
out

7.62 ladspa# TOC

Load a LADSPA (Linux Audio Developer’s Simple Plugin API) plugin.

To enable compilation of this filter you need to configure FFmpeg with --enable-ladspa.

file, f

Specifies the name of LADSPA plugin library to load. If the environment variable LADSPA_PATH is
defined, the LADSPA plugin is searched in each one of the directories specified by the colon
separated list in LADSPA_PATH, otherwise in the standard LADSPA paths, which are in this order:
HOME/.ladspa/lib/, /usr/local/lib/ladspa/, /usr/lib/ladspa/.

plugin, p

Specifies the plugin within the library. Some libraries contain only one plugin, but others contain
many of them. If this is not set filter will list all available plugins within the specified library.

controls, c

Set the ’|’ separated list of controls which are zero or more floating point values that determine the
behavior of the loaded plugin (for example delay, threshold or gain). Controls need to be defined
using the following syntax: c0=value0|c1=value1|c2=value2|..., where valuei is the value set on the
i-th control. Alternatively they can be also defined using the following syntax:
value0|value1|value2|..., where valuei is the value set on the i-th control. If controls is set to
help, all available controls and their valid ranges are printed.

sample_rate, s

Specify the sample rate, default to 44100. Only used if plugin have zero inputs.

nb_samples, n

Set the number of samples per channel per each output frame, default is 1024. Only used if plugin
have zero inputs.

duration, d

Set the minimum duration of the sourced audio. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than
the specified duration, as the generated audio is always cut at the end of a complete frame. If not
specified, or the expressed duration is negative, the audio is supposed to be generated forever. Only
used if plugin have zero inputs.

7.62.1 Examples# TOC

List all available plugins within amp (LADSPA example plugin) library:

ladspa=file=amp

List all available controls and their valid ranges for vcf_notch plugin from VCF library:

ladspa=f=vcf:p=vcf_notch:c=help

Simulate low quality audio equipment using Computer Music Toolkit (CMT) plugin library:

ladspa=file=cmt:plugin=lofi:controls=c0=22|c1=12|c2=12

Add reverberation to the audio using TAP-plugins (Tom’s Audio Processing plugins):

ladspa=file=tap_reverb:tap_reverb

Generate white noise, with 0.2 amplitude:

ladspa=file=cmt:noise_source_white:c=c0=.2

Generate 20 bpm clicks using plugin C* Click - Metronome from the C* Audio Plugin
Suite (CAPS) library:

ladspa=file=caps:Click:c=c1=20’

Apply C* Eq10X2 - Stereo 10-band equaliser effect:

ladspa=caps:Eq10X2:c=c0=-48|c9=-24|c3=12|c4=2

Increase volume by 20dB using fast lookahead limiter from Steve Harris SWH Plugins collection:

ladspa=fast_lookahead_limiter_1913:fastLookaheadLimiter:20|0|2

Attenuate low frequencies using Multiband EQ from Steve Harris SWH Plugins collection:

ladspa=mbeq_1197:mbeq:-24|-24|-24|0|0|0|0|0|0|0|0|0|0|0|0

Reduce stereo image using Narrower from the C* Audio Plugin Suite (CAPS) library:

ladspa=caps:Narrower

Another white noise, now using C* Audio Plugin Suite (CAPS) library:

ladspa=caps:White:.2

Some fractal noise, using C* Audio Plugin Suite (CAPS) library:

ladspa=caps:Fractal:c=c1=1

Dynamic volume normalization using VLevel plugin:

ladspa=vlevel-ladspa:vlevel_mono

7.62.2 Commands# TOC

This filter supports the following commands:

cN

Modify the N-th control value.

If the specified value is not valid, it is ignored and prior one is kept.

7.63 loudnorm# TOC

EBU R128 loudness normalization. Includes both dynamic and linear normalization modes. Support for
both single pass (livestreams, files) and double pass (files) modes. This algorithm can target IL, LRA, and
maximum true peak. To accurately detect true peaks, the audio stream will be upsampled to 192 kHz
unless the normalization mode is linear. Use the -ar option or aresample filter to explicitly set an
output sample rate.

The filter accepts the following options:

I, i

Set integrated loudness target. Range is -70.0 - -5.0. Default value is -24.0.

LRA, lra

Set loudness range target. Range is 1.0 - 20.0. Default value is 7.0.

TP, tp

Set maximum true peak. Range is -9.0 - +0.0. Default value is -2.0.

measured_I, measured_i

Measured IL of input file. Range is -99.0 - +0.0.

measured_LRA, measured_lra

Measured LRA of input file. Range is 0.0 - 99.0.

measured_TP, measured_tp

Measured true peak of input file. Range is -99.0 - +99.0.

measured_thresh

Measured threshold of input file. Range is -99.0 - +0.0.

offset

Set offset gain. Gain is applied before the true-peak limiter. Range is -99.0 - +99.0. Default is +0.0.

linear

Normalize linearly if possible. measured_I, measured_LRA, measured_TP, and measured_thresh
must also to be specified in order to use this mode. Options are true or false. Default is true.

dual_mono

Treat mono input files as "dual-mono". If a mono file is intended for playback on a stereo system, its
EBU R128 measurement will be perceptually incorrect. If set to true, this option will compensate
for this effect. Multi-channel input files are not affected by this option. Options are true or false.
Default is false.

print_format

Set print format for stats. Options are summary, json, or none. Default value is none.

7.64 lowpass# TOC

Apply a low-pass filter with 3dB point frequency. The filter can be either single-pole or double-pole (the
default). The filter roll off at 6dB per pole per octave (20dB per pole per decade).

The filter accepts the following options:

frequency, f

Set frequency in Hz. Default is 500.

poles, p

Set number of poles. Default is 2.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units. Applies only to double-pole filter. The default
is 0.707q and gives a Butterworth response.

channels, c

Specify which channels to filter, by default all available are filtered.

7.64.1 Examples# TOC

Lowpass only LFE channel, it LFE is not present it does nothing:

lowpass=c=LFE

7.64.2 Commands# TOC

This filter supports the following commands:

frequency, f

Change lowpass frequency. Syntax for the command is : "frequency"

width_type, t

Change lowpass width_type. Syntax for the command is : "width_type"

width, w

Change lowpass width. Syntax for the command is : "width"

7.65 lv2# TOC

Load a LV2 (LADSPA Version 2) plugin.

To enable compilation of this filter you need to configure FFmpeg with --enable-lv2.

plugin, p

Specifies the plugin URI. You may need to escape ’:’.

controls, c

Set the ’|’ separated list of controls which are zero or more floating point values that determine the
behavior of the loaded plugin (for example delay, threshold or gain). If controls is set to help,
all available controls and their valid ranges are printed.

sample_rate, s

Specify the sample rate, default to 44100. Only used if plugin have zero inputs.

nb_samples, n

Set the number of samples per channel per each output frame, default is 1024. Only used if plugin
have zero inputs.

duration, d

Set the minimum duration of the sourced audio. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than
the specified duration, as the generated audio is always cut at the end of a complete frame. If not
specified, or the expressed duration is negative, the audio is supposed to be generated forever. Only
used if plugin have zero inputs.

7.65.1 Examples# TOC

Apply bass enhancer plugin from Calf:

lv2=p=http\\\\://calf.sourceforge.net/plugins/BassEnhancer:c=amount=2

Apply vinyl plugin from Calf:

lv2=p=http\\\\://calf.sourceforge.net/plugins/Vinyl:c=drone=0.2|aging=0.5

Apply bit crusher plugin from ArtyFX:

lv2=p=http\\\\://www.openavproductions.com/artyfx#bitta:c=crush=0.3

7.66 mcompand# TOC

Multiband Compress or expand the audio’s dynamic range.

The input audio is divided into bands using 4th order Linkwitz-Riley IIRs. This is akin to the crossover of
a loudspeaker, and results in flat frequency response when absent compander action.

It accepts the following parameters:

args

This option syntax is: attack,decay,[attack,decay..] soft-knee points crossover_frequency [delay
[initial_volume [gain]]] | attack,decay ... For explanation of each item refer to compand filter
documentation.

7.67 pan# TOC

Mix channels with specific gain levels. The filter accepts the output channel layout followed by a set of
channels definitions.

This filter is also designed to efficiently remap the channels of an audio stream.

The filter accepts parameters of the form: "l|outdef|outdef|..."

l

output channel layout or number of channels

outdef

output channel specification, of the form: "out_name=[gain*] in_name[(+-)[gain*] in_name...]"

out_name

output channel to define, either a channel name (FL, FR, etc.) or a channel number (c0, c1, etc.)

gain

multiplicative coefficient for the channel, 1 leaving the volume unchanged

in_name

input channel to use, see out_name for details; it is not possible to mix named and numbered input
channels

If the ‘=’ in a channel specification is replaced by ‘<’, then the gains for that specification will be
renormalized so that the total is 1, thus avoiding clipping noise.

7.67.1 Mixing examples# TOC

For example, if you want to down-mix from stereo to mono, but with a bigger factor for the left channel:

pan=1c|c0=0.9*c0+0.1*c1

A customized down-mix to stereo that works automatically for 3-, 4-, 5- and 7-channels surround:

pan=stereo| FL < FL + 0.5*FC + 0.6*BL + 0.6*SL | FR < FR + 0.5*FC + 0.6*BR + 0.6*SR

Note that ffmpeg integrates a default down-mix (and up-mix) system that should be preferred (see "-ac"
option) unless you have very specific needs.

7.67.2 Remapping examples# TOC

The channel remapping will be effective if, and only if:

gain coefficients are zeroes or ones,
only one input per channel output,

If all these conditions are satisfied, the filter will notify the user ("Pure channel mapping detected"), and
use an optimized and lossless method to do the remapping.

For example, if you have a 5.1 source and want a stereo audio stream by dropping the extra channels:

pan="stereo| c0=FL | c1=FR"

Given the same source, you can also switch front left and front right channels and keep the input channel
layout:

pan="5.1| c0=c1 | c1=c0 | c2=c2 | c3=c3 | c4=c4 | c5=c5"

If the input is a stereo audio stream, you can mute the front left channel (and still keep the stereo channel
layout) with:

pan="stereo|c1=c1"

Still with a stereo audio stream input, you can copy the right channel in both front left and right:

pan="stereo| c0=FR | c1=FR"

7.68 replaygain# TOC

ReplayGain scanner filter. This filter takes an audio stream as an input and outputs it unchanged. At end of
filtering it displays track_gain and track_peak.

7.69 resample# TOC

Convert the audio sample format, sample rate and channel layout. It is not meant to be used directly.

7.70 rubberband# TOC

Apply time-stretching and pitch-shifting with librubberband.

To enable compilation of this filter, you need to configure FFmpeg with --enable-librubberband.

The filter accepts the following options:

tempo

Set tempo scale factor.

pitch

Set pitch scale factor.

transients

Set transients detector. Possible values are:

crisp
mixed
smooth

detector

Set detector. Possible values are:

compound
percussive
soft

phase

Set phase. Possible values are:

laminar
independent

window

Set processing window size. Possible values are:

standard
short
long

smoothing

Set smoothing. Possible values are:

off
on

formant

Enable formant preservation when shift pitching. Possible values are:

shifted
preserved

pitchq

Set pitch quality. Possible values are:

quality
speed
consistency

channels

Set channels. Possible values are:

apart
together

7.71 sidechaincompress# TOC

This filter acts like normal compressor but has the ability to compress detected signal using second input
signal. It needs two input streams and returns one output stream. First input stream will be processed
depending on second stream signal. The filtered signal then can be filtered with other filters in later stages
of processing. See pan and amerge filter.

The filter accepts the following options:

level_in

Set input gain. Default is 1. Range is between 0.015625 and 64.

threshold

If a signal of second stream raises above this level it will affect the gain reduction of first stream. By
default is 0.125. Range is between 0.00097563 and 1.

ratio

Set a ratio about which the signal is reduced. 1:2 means that if the level raised 4dB above the
threshold, it will be only 2dB above after the reduction. Default is 2. Range is between 1 and 20.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction starts.
Default is 20. Range is between 0.01 and 2000.

release

Amount of milliseconds the signal has to fall below the threshold before reduction is decreased again.
Default is 250. Range is between 0.01 and 9000.

makeup

Set the amount by how much signal will be amplified after processing. Default is 1. Range is from 1
to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.82843.
Range is between 1 and 8.

link

Choose if the average level between all channels of side-chain stream or the louder(maximum)
channel of side-chain stream affects the reduction. Default is average.

detection

Should the exact signal be taken in case of peak or an RMS one in case of rms. Default is rms
which is mainly smoother.

level_sc

Set sidechain gain. Default is 1. Range is between 0.015625 and 64.

mix

How much to use compressed signal in output. Default is 1. Range is between 0 and 1.

7.71.1 Examples# TOC

Full ffmpeg example taking 2 audio inputs, 1st input to be compressed depending on the signal of
2nd input and later compressed signal to be merged with 2nd input:

ffmpeg -i main.flac -i sidechain.flac -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress[compr];[compr][mix]amerge"

7.72 sidechaingate# TOC

A sidechain gate acts like a normal (wideband) gate but has the ability to filter the detected signal before
sending it to the gain reduction stage. Normally a gate uses the full range signal to detect a level above the
threshold. For example: If you cut all lower frequencies from your sidechain signal the gate will decrease
the volume of your track only if not enough highs appear. With this technique you are able to reduce the
resonation of a natural drum or remove "rumbling" of muted strokes from a heavily distorted guitar. It
needs two input streams and returns one output stream. First input stream will be processed depending on
second stream signal.

The filter accepts the following options:

level_in

Set input level before filtering. Default is 1. Allowed range is from 0.015625 to 64.

range

Set the level of gain reduction when the signal is below the threshold. Default is 0.06125. Allowed
range is from 0 to 1.

threshold

If a signal rises above this level the gain reduction is released. Default is 0.125. Allowed range is
from 0 to 1.

ratio

Set a ratio about which the signal is reduced. Default is 2. Allowed range is from 1 to 9000.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction stops. Default
is 20 milliseconds. Allowed range is from 0.01 to 9000.

release

Amount of milliseconds the signal has to fall below the threshold before the reduction is increased
again. Default is 250 milliseconds. Allowed range is from 0.01 to 9000.

makeup

Set amount of amplification of signal after processing. Default is 1. Allowed range is from 1 to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is
2.828427125. Allowed range is from 1 to 8.

detection

Choose if exact signal should be taken for detection or an RMS like one. Default is rms. Can be peak
or rms.

link

Choose if the average level between all channels or the louder channel affects the reduction. Default
is average. Can be average or maximum.

level_sc

Set sidechain gain. Default is 1. Range is from 0.015625 to 64.

7.73 silencedetect# TOC

Detect silence in an audio stream.

This filter logs a message when it detects that the input audio volume is less or equal to a noise tolerance
value for a duration greater or equal to the minimum detected noise duration.

The printed times and duration are expressed in seconds.

The filter accepts the following options:

duration, d

Set silence duration until notification (default is 2 seconds).

noise, n

Set noise tolerance. Can be specified in dB (in case "dB" is appended to the specified value) or
amplitude ratio. Default is -60dB, or 0.001.

7.73.1 Examples# TOC

Detect 5 seconds of silence with -50dB noise tolerance:

silencedetect=n=-50dB:d=5

Complete example with ffmpeg to detect silence with 0.0001 noise tolerance in silence.mp3:

ffmpeg -i silence.mp3 -af silencedetect=noise=0.0001 -f null -

7.74 silenceremove# TOC

Remove silence from the beginning, middle or end of the audio.

The filter accepts the following options:

start_periods

This value is used to indicate if audio should be trimmed at beginning of the audio. A value of zero
indicates no silence should be trimmed from the beginning. When specifying a non-zero value, it
trims audio up until it finds non-silence. Normally, when trimming silence from beginning of audio
the start_periods will be 1 but it can be increased to higher values to trim all audio up to specific
count of non-silence periods. Default value is 0.

start_duration

Specify the amount of time that non-silence must be detected before it stops trimming audio. By
increasing the duration, bursts of noises can be treated as silence and trimmed off. Default value is 0.

start_threshold

This indicates what sample value should be treated as silence. For digital audio, a value of 0 may be
fine but for audio recorded from analog, you may wish to increase the value to account for
background noise. Can be specified in dB (in case "dB" is appended to the specified value) or
amplitude ratio. Default value is 0.

stop_periods

Set the count for trimming silence from the end of audio. To remove silence from the middle of a file,
specify a stop_periods that is negative. This value is then treated as a positive value and is used to
indicate the effect should restart processing as specified by start_periods, making it suitable for
removing periods of silence in the middle of the audio. Default value is 0.

stop_duration

Specify a duration of silence that must exist before audio is not copied any more. By specifying a
higher duration, silence that is wanted can be left in the audio. Default value is 0.

stop_threshold

This is the same as start_threshold but for trimming silence from the end of audio. Can be
specified in dB (in case "dB" is appended to the specified value) or amplitude ratio. Default value is
0.

leave_silence

This indicates that stop_duration length of audio should be left intact at the beginning of each period
of silence. For example, if you want to remove long pauses between words but do not want to remove
the pauses completely. Default value is 0.

detection

Set how is silence detected. Can be rms or peak. Second is faster and works better with digital
silence which is exactly 0. Default value is rms.

window

Set ratio used to calculate size of window for detecting silence. Default value is 0.02. Allowed
range is from 0 to 10.

7.74.1 Examples# TOC

The following example shows how this filter can be used to start a recording that does not contain the
delay at the start which usually occurs between pressing the record button and the start of the
performance:

silenceremove=1:5:0.02

Trim all silence encountered from beginning to end where there is more than 1 second of silence in
audio:

silenceremove=0:0:0:-1:1:-90dB

7.75 sofalizer# TOC

SOFAlizer uses head-related transfer functions (HRTFs) to create virtual loudspeakers around the user for
binaural listening via headphones (audio formats up to 9 channels supported). The HRTFs are stored in
SOFA files (see http://www.sofacoustics.org/ for a database). SOFAlizer is developed at the Acoustics
Research Institute (ARI) of the Austrian Academy of Sciences.

To enable compilation of this filter you need to configure FFmpeg with --enable-libmysofa.

The filter accepts the following options:

sofa

Set the SOFA file used for rendering.

gain

Set gain applied to audio. Value is in dB. Default is 0.

rotation

Set rotation of virtual loudspeakers in deg. Default is 0.

elevation

Set elevation of virtual speakers in deg. Default is 0.

http://www.sofacoustics.org/

radius

Set distance in meters between loudspeakers and the listener with near-field HRTFs. Default is 1.

type

Set processing type. Can be time or freq. time is processing audio in time domain which is slow. freq
is processing audio in frequency domain which is fast. Default is freq.

speakers

Set custom positions of virtual loudspeakers. Syntax for this option is: <CH> <AZIM>
<ELEV>[|<CH> <AZIM> <ELEV>|...]. Each virtual loudspeaker is described with short channel
name following with azimuth and elevation in degrees. Each virtual loudspeaker description is
separated by ’|’. For example to override front left and front right channel positions use:
’speakers=FL 45 15|FR 345 15’. Descriptions with unrecognised channel names are ignored.

lfegain

Set custom gain for LFE channels. Value is in dB. Default is 0.

7.75.1 Examples# TOC

Using ClubFritz6 sofa file:

sofalizer=sofa=/path/to/ClubFritz6.sofa:type=freq:radius=1

Using ClubFritz12 sofa file and bigger radius with small rotation:

sofalizer=sofa=/path/to/ClubFritz12.sofa:type=freq:radius=2:rotation=5

Similar as above but with custom speaker positions for front left, front right, back left and back right
and also with custom gain:

"sofalizer=sofa=/path/to/ClubFritz6.sofa:type=freq:radius=2:speakers=FL 45|FR 315|BL 135|BR 225:gain=28"

7.76 stereotools# TOC

This filter has some handy utilities to manage stereo signals, for converting M/S stereo recordings to L/R
signal while having control over the parameters or spreading the stereo image of master track.

The filter accepts the following options:

level_in

Set input level before filtering for both channels. Defaults is 1. Allowed range is from 0.015625 to
64.

level_out

Set output level after filtering for both channels. Defaults is 1. Allowed range is from 0.015625 to 64.

balance_in

Set input balance between both channels. Default is 0. Allowed range is from -1 to 1.

balance_out

Set output balance between both channels. Default is 0. Allowed range is from -1 to 1.

softclip

Enable softclipping. Results in analog distortion instead of harsh digital 0dB clipping. Disabled by
default.

mutel

Mute the left channel. Disabled by default.

muter

Mute the right channel. Disabled by default.

phasel

Change the phase of the left channel. Disabled by default.

phaser

Change the phase of the right channel. Disabled by default.

mode

Set stereo mode. Available values are:

‘lr>lr’

Left/Right to Left/Right, this is default.

‘lr>ms’

Left/Right to Mid/Side.

‘ms>lr’

Mid/Side to Left/Right.

‘lr>ll’

Left/Right to Left/Left.

‘lr>rr’

Left/Right to Right/Right.

‘lr>l+r’

Left/Right to Left + Right.

‘lr>rl’

Left/Right to Right/Left.

‘ms>ll’

Mid/Side to Left/Left.

‘ms>rr’

Mid/Side to Right/Right.

slev

Set level of side signal. Default is 1. Allowed range is from 0.015625 to 64.

sbal

Set balance of side signal. Default is 0. Allowed range is from -1 to 1.

mlev

Set level of the middle signal. Default is 1. Allowed range is from 0.015625 to 64.

mpan

Set middle signal pan. Default is 0. Allowed range is from -1 to 1.

base

Set stereo base between mono and inversed channels. Default is 0. Allowed range is from -1 to 1.

delay

Set delay in milliseconds how much to delay left from right channel and vice versa. Default is 0.
Allowed range is from -20 to 20.

sclevel

Set S/C level. Default is 1. Allowed range is from 1 to 100.

phase

Set the stereo phase in degrees. Default is 0. Allowed range is from 0 to 360.

bmode_in, bmode_out

Set balance mode for balance_in/balance_out option.

Can be one of the following:

‘balance’

Classic balance mode. Attenuate one channel at time. Gain is raised up to 1.

‘amplitude’

Similar as classic mode above but gain is raised up to 2.

‘power’

Equal power distribution, from -6dB to +6dB range.

7.76.1 Examples# TOC

Apply karaoke like effect:

stereotools=mlev=0.015625

Convert M/S signal to L/R:

"stereotools=mode=ms>lr"

7.77 stereowiden# TOC

This filter enhance the stereo effect by suppressing signal common to both channels and by delaying the
signal of left into right and vice versa, thereby widening the stereo effect.

The filter accepts the following options:

delay

Time in milliseconds of the delay of left signal into right and vice versa. Default is 20 milliseconds.

feedback

Amount of gain in delayed signal into right and vice versa. Gives a delay effect of left signal in right
output and vice versa which gives widening effect. Default is 0.3.

crossfeed

Cross feed of left into right with inverted phase. This helps in suppressing the mono. If the value is 1
it will cancel all the signal common to both channels. Default is 0.3.

drymix

Set level of input signal of original channel. Default is 0.8.

7.78 superequalizer# TOC

Apply 18 band equalizer.

The filter accepts the following options:

1b

Set 65Hz band gain.

2b

Set 92Hz band gain.

3b

Set 131Hz band gain.

4b

Set 185Hz band gain.

5b

Set 262Hz band gain.

6b

Set 370Hz band gain.

7b

Set 523Hz band gain.

8b

Set 740Hz band gain.

9b

Set 1047Hz band gain.

10b

Set 1480Hz band gain.

11b

Set 2093Hz band gain.

12b

Set 2960Hz band gain.

13b

Set 4186Hz band gain.

14b

Set 5920Hz band gain.

15b

Set 8372Hz band gain.

16b

Set 11840Hz band gain.

17b

Set 16744Hz band gain.

18b

Set 20000Hz band gain.

7.79 surround# TOC

Apply audio surround upmix filter.

This filter allows to produce multichannel output from audio stream.

The filter accepts the following options:

chl_out

Set output channel layout. By default, this is 5.1.

See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

chl_in

Set input channel layout. By default, this is stereo.

See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

level_in

Set input volume level. By default, this is 1.

level_out

Set output volume level. By default, this is 1.

lfe

Enable LFE channel output if output channel layout has it. By default, this is enabled.

lfe_low

Set LFE low cut off frequency. By default, this is 128 Hz.

lfe_high

Set LFE high cut off frequency. By default, this is 256 Hz.

fc_in

Set front center input volume. By default, this is 1.

fc_out

Set front center output volume. By default, this is 1.

lfe_in

Set LFE input volume. By default, this is 1.

lfe_out

Set LFE output volume. By default, this is 1.

7.80 treble, highshelf# TOC

Boost or cut treble (upper) frequencies of the audio using a two-pole shelving filter with a response similar
to that of a standard hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).

The filter accepts the following options:

gain, g

Give the gain at whichever is the lower of ~22 kHz and the Nyquist frequency. Its useful range is
about -20 (for a large cut) to +20 (for a large boost). Beware of clipping when using a positive gain.

frequency, f

Set the filter’s central frequency and so can be used to extend or reduce the frequency range to be
boosted or cut. The default value is 3000 Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Determine how steep is the filter’s shelf transition.

channels, c

Specify which channels to filter, by default all available are filtered.

7.80.1 Commands# TOC

This filter supports the following commands:

frequency, f

Change treble frequency. Syntax for the command is : "frequency"

width_type, t

Change treble width_type. Syntax for the command is : "width_type"

width, w

Change treble width. Syntax for the command is : "width"

gain, g

Change treble gain. Syntax for the command is : "gain"

7.81 tremolo# TOC

Sinusoidal amplitude modulation.

The filter accepts the following options:

f

Modulation frequency in Hertz. Modulation frequencies in the subharmonic range (20 Hz or lower)
will result in a tremolo effect. This filter may also be used as a ring modulator by specifying a
modulation frequency higher than 20 Hz. Range is 0.1 - 20000.0. Default value is 5.0 Hz.

d

Depth of modulation as a percentage. Range is 0.0 - 1.0. Default value is 0.5.

7.82 vibrato# TOC

Sinusoidal phase modulation.

The filter accepts the following options:

f

Modulation frequency in Hertz. Range is 0.1 - 20000.0. Default value is 5.0 Hz.

d

Depth of modulation as a percentage. Range is 0.0 - 1.0. Default value is 0.5.

7.83 volume# TOC

Adjust the input audio volume.

It accepts the following parameters:

volume

Set audio volume expression.

Output values are clipped to the maximum value.

The output audio volume is given by the relation:

output_volume = volume * input_volume

The default value for volume is "1.0".

precision

This parameter represents the mathematical precision.

It determines which input sample formats will be allowed, which affects the precision of the volume
scaling.

fixed

8-bit fixed-point; this limits input sample format to U8, S16, and S32.

float

32-bit floating-point; this limits input sample format to FLT. (default)

double

64-bit floating-point; this limits input sample format to DBL.

replaygain

Choose the behaviour on encountering ReplayGain side data in input frames.

drop

Remove ReplayGain side data, ignoring its contents (the default).

ignore

Ignore ReplayGain side data, but leave it in the frame.

track

Prefer the track gain, if present.

album

Prefer the album gain, if present.

replaygain_preamp

Pre-amplification gain in dB to apply to the selected replaygain gain.

Default value for replaygain_preamp is 0.0.

eval

Set when the volume expression is evaluated.

It accepts the following values:

‘once’

only evaluate expression once during the filter initialization, or when the ‘volume’ command is
sent

‘frame’

evaluate expression for each incoming frame

Default value is ‘once’.

The volume expression can contain the following parameters.

n

frame number (starting at zero)

nb_channels

number of channels

nb_consumed_samples

number of samples consumed by the filter

nb_samples

number of samples in the current frame

pos

original frame position in the file

pts

frame PTS

sample_rate

sample rate

startpts

PTS at start of stream

startt

time at start of stream

t

frame time

tb

timestamp timebase

volume

last set volume value

Note that when eval is set to ‘once’ only the sample_rate and tb variables are available, all other
variables will evaluate to NAN.

7.83.1 Commands# TOC

This filter supports the following commands:

volume

Modify the volume expression. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

replaygain_noclip

Prevent clipping by limiting the gain applied.

Default value for replaygain_noclip is 1.

7.83.2 Examples# TOC

Halve the input audio volume:

volume=volume=0.5
volume=volume=1/2
volume=volume=-6.0206dB

In all the above example the named key for volume can be omitted, for example like in:

volume=0.5

Increase input audio power by 6 decibels using fixed-point precision:

volume=volume=6dB:precision=fixed

Fade volume after time 10 with an annihilation period of 5 seconds:

volume=’if(lt(t,10),1,max(1-(t-10)/5,0))’:eval=frame

7.84 volumedetect# TOC

Detect the volume of the input video.

The filter has no parameters. The input is not modified. Statistics about the volume will be printed in the
log when the input stream end is reached.

In particular it will show the mean volume (root mean square), maximum volume (on a per-sample basis),
and the beginning of a histogram of the registered volume values (from the maximum value to a
cumulated 1/1000 of the samples).

All volumes are in decibels relative to the maximum PCM value.

7.84.1 Examples# TOC

Here is an excerpt of the output:

[Parsed_volumedetect_0 0xa23120] mean_volume: -27 dB
[Parsed_volumedetect_0 0xa23120] max_volume: -4 dB
[Parsed_volumedetect_0 0xa23120] histogram_4db: 6
[Parsed_volumedetect_0 0xa23120] histogram_5db: 62
[Parsed_volumedetect_0 0xa23120] histogram_6db: 286
[Parsed_volumedetect_0 0xa23120] histogram_7db: 1042
[Parsed_volumedetect_0 0xa23120] histogram_8db: 2551
[Parsed_volumedetect_0 0xa23120] histogram_9db: 4609
[Parsed_volumedetect_0 0xa23120] histogram_10db: 8409

It means that:

The mean square energy is approximately -27 dB, or 10^-2.7.
The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.

In other words, raising the volume by +4 dB does not cause any clipping, raising it by +5 dB causes
clipping for 6 samples, etc.

8 Audio Sources# TOC
Below is a description of the currently available audio sources.

8.1 abuffer# TOC

Buffer audio frames, and make them available to the filter chain.

This source is mainly intended for a programmatic use, in particular through the interface defined in
libavfilter/asrc_abuffer.h.

It accepts the following parameters:

time_base

The timebase which will be used for timestamps of submitted frames. It must be either a
floating-point number or in numerator/denominator form.

sample_rate

The sample rate of the incoming audio buffers.

sample_fmt

The sample format of the incoming audio buffers. Either a sample format name or its corresponding
integer representation from the enum AVSampleFormat in libavutil/samplefmt.h

channel_layout

The channel layout of the incoming audio buffers. Either a channel layout name from
channel_layout_map in libavutil/channel_layout.c or its corresponding integer
representation from the AV_CH_LAYOUT_* macros in libavutil/channel_layout.h

channels

The number of channels of the incoming audio buffers. If both channels and channel_layout are
specified, then they must be consistent.

8.1.1 Examples# TOC

abuffer=sample_rate=44100:sample_fmt=s16p:channel_layout=stereo

will instruct the source to accept planar 16bit signed stereo at 44100Hz. Since the sample format with
name "s16p" corresponds to the number 6 and the "stereo" channel layout corresponds to the value 0x3,
this is equivalent to:

abuffer=sample_rate=44100:sample_fmt=6:channel_layout=0x3

8.2 aevalsrc# TOC

Generate an audio signal specified by an expression.

This source accepts in input one or more expressions (one for each channel), which are evaluated and used
to generate a corresponding audio signal.

This source accepts the following options:

exprs

Set the ’|’-separated expressions list for each separate channel. In case the channel_layout
option is not specified, the selected channel layout depends on the number of provided expressions.
Otherwise the last specified expression is applied to the remaining output channels.

channel_layout, c

Set the channel layout. The number of channels in the specified layout must be equal to the number
of specified expressions.

duration, d

Set the minimum duration of the sourced audio. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than
the specified duration, as the generated audio is always cut at the end of a complete frame.

If not specified, or the expressed duration is negative, the audio is supposed to be generated forever.

nb_samples, n

Set the number of samples per channel per each output frame, default to 1024.

sample_rate, s

Specify the sample rate, default to 44100.

Each expression in exprs can contain the following constants:

n

number of the evaluated sample, starting from 0

t

time of the evaluated sample expressed in seconds, starting from 0

s

sample rate

8.2.1 Examples# TOC

Generate silence:

aevalsrc=0

Generate a sin signal with frequency of 440 Hz, set sample rate to 8000 Hz:

aevalsrc="sin(440*2*PI*t):s=8000"

Generate a two channels signal, specify the channel layout (Front Center + Back Center) explicitly:

aevalsrc="sin(420*2*PI*t)|cos(430*2*PI*t):c=FC|BC"

Generate white noise:

aevalsrc="-2+random(0)"

Generate an amplitude modulated signal:

aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"

Generate 2.5 Hz binaural beats on a 360 Hz carrier:

aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) | 0.1*sin(2*PI*(360+2.5/2)*t)"

8.3 anullsrc# TOC

The null audio source, return unprocessed audio frames. It is mainly useful as a template and to be
employed in analysis / debugging tools, or as the source for filters which ignore the input data (for
example the sox synth filter).

This source accepts the following options:

channel_layout, cl

Specifies the channel layout, and can be either an integer or a string representing a channel layout.
The default value of channel_layout is "stereo".

Check the channel_layout_map definition in libavutil/channel_layout.c for the mapping
between strings and channel layout values.

sample_rate, r

Specifies the sample rate, and defaults to 44100.

nb_samples, n

Set the number of samples per requested frames.

8.3.1 Examples# TOC

Set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.

anullsrc=r=48000:cl=4

Do the same operation with a more obvious syntax:

anullsrc=r=48000:cl=mono

All the parameters need to be explicitly defined.

8.4 flite# TOC

Synthesize a voice utterance using the libflite library.

To enable compilation of this filter you need to configure FFmpeg with --enable-libflite.

Note that versions of the flite library prior to 2.0 are not thread-safe.

The filter accepts the following options:

list_voices

If set to 1, list the names of the available voices and exit immediately. Default value is 0.

nb_samples, n

Set the maximum number of samples per frame. Default value is 512.

textfile

Set the filename containing the text to speak.

text

Set the text to speak.

voice, v

Set the voice to use for the speech synthesis. Default value is kal. See also the list_voices option.

8.4.1 Examples# TOC

Read from file speech.txt, and synthesize the text using the standard flite voice:

flite=textfile=speech.txt

Read the specified text selecting the slt voice:

flite=text=’So fare thee well, poor devil of a Sub-Sub, whose commentator I am’:voice=slt

Input text to ffmpeg:

ffmpeg -f lavfi -i flite=text=’So fare thee well, poor devil of a Sub-Sub, whose commentator I am’:voice=slt

Make ffplay speak the specified text, using flite and the lavfi device:

ffplay -f lavfi flite=text=’No more be grieved for which that thou hast done.’

For more information about libflite, check: http://www.festvox.org/flite/

8.5 anoisesrc# TOC

Generate a noise audio signal.

The filter accepts the following options:

sample_rate, r

Specify the sample rate. Default value is 48000 Hz.

amplitude, a

Specify the amplitude (0.0 - 1.0) of the generated audio stream. Default value is 1.0.

duration, d

Specify the duration of the generated audio stream. Not specifying this option results in noise with an
infinite length.

color, colour, c

Specify the color of noise. Available noise colors are white, pink, brown, blue and violet. Default
color is white.

seed, s

http://www.festvox.org/flite/

Specify a value used to seed the PRNG.

nb_samples, n

Set the number of samples per each output frame, default is 1024.

8.5.1 Examples# TOC

Generate 60 seconds of pink noise, with a 44.1 kHz sampling rate and an amplitude of 0.5:

anoisesrc=d=60:c=pink:r=44100:a=0.5

8.6 hilbert# TOC

Generate odd-tap Hilbert transform FIR coefficients.

The resulting stream can be used with afir filter for phase-shifting the signal by 90 degrees.

This is used in many matrix coding schemes and for analytic signal generation. The process is often
written as a multiplication by i (or j), the imaginary unit.

The filter accepts the following options:

sample_rate, s

Set sample rate, default is 44100.

taps, t

Set length of FIR filter, default is 22051.

nb_samples, n

Set number of samples per each frame.

win_func, w

Set window function to be used when generating FIR coefficients.

8.7 sine# TOC

Generate an audio signal made of a sine wave with amplitude 1/8.

The audio signal is bit-exact.

The filter accepts the following options:

frequency, f

Set the carrier frequency. Default is 440 Hz.

beep_factor, b

Enable a periodic beep every second with frequency beep_factor times the carrier frequency. Default
is 0, meaning the beep is disabled.

sample_rate, r

Specify the sample rate, default is 44100.

duration, d

Specify the duration of the generated audio stream.

samples_per_frame

Set the number of samples per output frame.

The expression can contain the following constants:

n

The (sequential) number of the output audio frame, starting from 0.

pts

The PTS (Presentation TimeStamp) of the output audio frame, expressed in TB units.

t

The PTS of the output audio frame, expressed in seconds.

TB

The timebase of the output audio frames.

Default is 1024.

8.7.1 Examples# TOC

Generate a simple 440 Hz sine wave:

sine

Generate a 220 Hz sine wave with a 880 Hz beep each second, for 5 seconds:

sine=220:4:d=5
sine=f=220:b=4:d=5
sine=frequency=220:beep_factor=4:duration=5

Generate a 1 kHz sine wave following 1602,1601,1602,1601,1602 NTSC pattern:

sine=1000:samples_per_frame=’st(0,mod(n,5)); 1602-not(not(eq(ld(0),1)+eq(ld(0),3)))’

9 Audio Sinks# TOC
Below is a description of the currently available audio sinks.

9.1 abuffersink# TOC

Buffer audio frames, and make them available to the end of filter chain.

This sink is mainly intended for programmatic use, in particular through the interface defined in
libavfilter/buffersink.h or the options system.

It accepts a pointer to an AVABufferSinkContext structure, which defines the incoming buffers’ formats,
to be passed as the opaque parameter to avfilter_init_filter for initialization.

9.2 anullsink# TOC

Null audio sink; do absolutely nothing with the input audio. It is mainly useful as a template and for use in
analysis / debugging tools.

10 Video Filters# TOC
When you configure your FFmpeg build, you can disable any of the existing filters using
--disable-filters. The configure output will show the video filters included in your build.

Below is a description of the currently available video filters.

10.1 alphaextract# TOC

Extract the alpha component from the input as a grayscale video. This is especially useful with the
alphamerge filter.

10.2 alphamerge# TOC

Add or replace the alpha component of the primary input with the grayscale value of a second input. This
is intended for use with alphaextract to allow the transmission or storage of frame sequences that have
alpha in a format that doesn’t support an alpha channel.

For example, to reconstruct full frames from a normal YUV-encoded video and a separate video created
with alphaextract, you might use:

movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]

Since this filter is designed for reconstruction, it operates on frame sequences without considering
timestamps, and terminates when either input reaches end of stream. This will cause problems if your
encoding pipeline drops frames. If you’re trying to apply an image as an overlay to a video stream,
consider the overlay filter instead.

10.3 amplify# TOC

Amplify differences between current pixel and pixels of adjacent frames in same pixel location.

This filter accepts the following options:

radius

Set frame radius. Default is 2. Allowed range is from 1 to 63. For example radius of 3 will instruct
filter to calculate average of 7 frames.

factor

Set factor to amplify difference. Default is 2. Allowed range is from 0 to 65535.

threshold

Set threshold for difference amplification. Any differrence greater or equal to this value will not alter
source pixel. Default is 10. Allowed range is from 0 to 65535.

low

Set lower limit for changing source pixel. Default is 65535. Allowed range is from 0 to 65535. This
option controls maximum possible value that will decrease source pixel value.

high

Set high limit for changing source pixel. Default is 65535. Allowed range is from 0 to 65535. This
option controls maximum possible value that will increase source pixel value.

planes

Set which planes to filter. Default is all. Allowed range is from 0 to 15.

10.4 ass# TOC

Same as the subtitles filter, except that it doesn’t require libavcodec and libavformat to work. On the other
hand, it is limited to ASS (Advanced Substation Alpha) subtitles files.

This filter accepts the following option in addition to the common options from the subtitles filter:

shaping

Set the shaping engine

Available values are:

‘auto’

The default libass shaping engine, which is the best available.

‘simple’

Fast, font-agnostic shaper that can do only substitutions

‘complex’

Slower shaper using OpenType for substitutions and positioning

The default is auto.

10.5 atadenoise# TOC

Apply an Adaptive Temporal Averaging Denoiser to the video input.

The filter accepts the following options:

0a

Set threshold A for 1st plane. Default is 0.02. Valid range is 0 to 0.3.

0b

Set threshold B for 1st plane. Default is 0.04. Valid range is 0 to 5.

1a

Set threshold A for 2nd plane. Default is 0.02. Valid range is 0 to 0.3.

1b

Set threshold B for 2nd plane. Default is 0.04. Valid range is 0 to 5.

2a

Set threshold A for 3rd plane. Default is 0.02. Valid range is 0 to 0.3.

2b

Set threshold B for 3rd plane. Default is 0.04. Valid range is 0 to 5.

Threshold A is designed to react on abrupt changes in the input signal and threshold B is designed to
react on continuous changes in the input signal.

s

Set number of frames filter will use for averaging. Default is 9. Must be odd number in range [5,
129].

p

Set what planes of frame filter will use for averaging. Default is all.

10.6 avgblur# TOC

Apply average blur filter.

The filter accepts the following options:

sizeX

Set horizontal radius size.

planes

Set which planes to filter. By default all planes are filtered.

sizeY

Set vertical radius size, if zero it will be same as sizeX. Default is 0.

10.7 bbox# TOC

Compute the bounding box for the non-black pixels in the input frame luminance plane.

This filter computes the bounding box containing all the pixels with a luminance value greater than the
minimum allowed value. The parameters describing the bounding box are printed on the filter log.

The filter accepts the following option:

min_val

Set the minimal luminance value. Default is 16.

10.8 bitplanenoise# TOC

Show and measure bit plane noise.

The filter accepts the following options:

bitplane

Set which plane to analyze. Default is 1.

filter

Filter out noisy pixels from bitplane set above. Default is disabled.

10.9 blackdetect# TOC

Detect video intervals that are (almost) completely black. Can be useful to detect chapter transitions,
commercials, or invalid recordings. Output lines contains the time for the start, end and duration of the
detected black interval expressed in seconds.

In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

The filter accepts the following options:

black_min_duration, d

Set the minimum detected black duration expressed in seconds. It must be a non-negative floating
point number.

Default value is 2.0.

picture_black_ratio_th, pic_th

Set the threshold for considering a picture "black". Express the minimum value for the ratio:

nb_black_pixels / nb_pixels

for which a picture is considered black. Default value is 0.98.

pixel_black_th, pix_th

Set the threshold for considering a pixel "black".

The threshold expresses the maximum pixel luminance value for which a pixel is considered "black".
The provided value is scaled according to the following equation:

absolute_threshold = luminance_minimum_value + pixel_black_th * luminance_range_size

luminance_range_size and luminance_minimum_value depend on the input video format, the range is
[0-255] for YUV full-range formats and [16-235] for YUV non full-range formats.

Default value is 0.10.

The following example sets the maximum pixel threshold to the minimum value, and detects only black
intervals of 2 or more seconds:

blackdetect=d=2:pix_th=0.00

10.10 blackframe# TOC

Detect frames that are (almost) completely black. Can be useful to detect chapter transitions or
commercials. Output lines consist of the frame number of the detected frame, the percentage of blackness,
the position in the file if known or -1 and the timestamp in seconds.

In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

This filter exports frame metadata lavfi.blackframe.pblack. The value represents the percentage
of pixels in the picture that are below the threshold value.

It accepts the following parameters:

amount

The percentage of the pixels that have to be below the threshold; it defaults to 98.

threshold, thresh

The threshold below which a pixel value is considered black; it defaults to 32.

10.11 blend, tblend# TOC

Blend two video frames into each other.

The blend filter takes two input streams and outputs one stream, the first input is the "top" layer and
second input is "bottom" layer. By default, the output terminates when the longest input terminates.

The tblend (time blend) filter takes two consecutive frames from one single stream, and outputs the
result obtained by blending the new frame on top of the old frame.

A description of the accepted options follows.

c0_mode
c1_mode
c2_mode
c3_mode
all_mode

Set blend mode for specific pixel component or all pixel components in case of all_mode. Default
value is normal.

Available values for component modes are:

‘addition’
‘grainmerge’
‘and’
‘average’
‘burn’
‘darken’
‘difference’
‘grainextract’
‘divide’
‘dodge’
‘freeze’
‘exclusion’
‘extremity’
‘glow’
‘hardlight’
‘hardmix’
‘heat’
‘lighten’
‘linearlight’
‘multiply’
‘multiply128’
‘negation’
‘normal’
‘or’
‘overlay’
‘phoenix’
‘pinlight’
‘reflect’
‘screen’
‘softlight’
‘subtract’
‘vividlight’

‘xor’
c0_opacity
c1_opacity
c2_opacity
c3_opacity
all_opacity

Set blend opacity for specific pixel component or all pixel components in case of all_opacity. Only
used in combination with pixel component blend modes.

c0_expr
c1_expr
c2_expr
c3_expr
all_expr

Set blend expression for specific pixel component or all pixel components in case of all_expr. Note
that related mode options will be ignored if those are set.

The expressions can use the following variables:

N

The sequential number of the filtered frame, starting from 0.

X
Y

the coordinates of the current sample

W
H

the width and height of currently filtered plane

SW
SH

Width and height scale for the plane being filtered. It is the ratio between the dimensions of the
current plane to the luma plane, e.g. for a yuv420p frame, the values are 1,1 for the luma
plane and 0.5,0.5 for the chroma planes.

T

Time of the current frame, expressed in seconds.

TOP, A

Value of pixel component at current location for first video frame (top layer).

BOTTOM, B

Value of pixel component at current location for second video frame (bottom layer).

The blend filter also supports the framesync options.

10.11.1 Examples# TOC

Apply transition from bottom layer to top layer in first 10 seconds:

blend=all_expr=’A*(if(gte(T,10),1,T/10))+B*(1-(if(gte(T,10),1,T/10)))’

Apply linear horizontal transition from top layer to bottom layer:

blend=all_expr=’A*(X/W)+B*(1-X/W)’

Apply 1x1 checkerboard effect:

blend=all_expr=’if(eq(mod(X,2),mod(Y,2)),A,B)’

Apply uncover left effect:

blend=all_expr=’if(gte(N*SW+X,W),A,B)’

Apply uncover down effect:

blend=all_expr=’if(gte(Y-N*SH,0),A,B)’

Apply uncover up-left effect:

blend=all_expr=’if(gte(T*SH*40+Y,H)*gte((T*40*SW+X)*W/H,W),A,B)’

Split diagonally video and shows top and bottom layer on each side:

blend=all_expr=’if(gt(X,Y*(W/H)),A,B)’

Display differences between the current and the previous frame:

tblend=all_mode=grainextract

10.12 boxblur# TOC

Apply a boxblur algorithm to the input video.

It accepts the following parameters:

luma_radius, lr
luma_power, lp
chroma_radius, cr

chroma_power, cp
alpha_radius, ar
alpha_power, ap

A description of the accepted options follows.

luma_radius, lr
chroma_radius, cr
alpha_radius, ar

Set an expression for the box radius in pixels used for blurring the corresponding input plane.

The radius value must be a non-negative number, and must not be greater than the value of the
expression min(w,h)/2 for the luma and alpha planes, and of min(cw,ch)/2 for the chroma
planes.

Default value for luma_radius is "2". If not specified, chroma_radius and alpha_radius
default to the corresponding value set for luma_radius.

The expressions can contain the following constants:

w
h

The input width and height in pixels.

cw
ch

The input chroma image width and height in pixels.

hsub
vsub

The horizontal and vertical chroma subsample values. For example, for the pixel format
"yuv422p", hsub is 2 and vsub is 1.

luma_power, lp
chroma_power, cp
alpha_power, ap

Specify how many times the boxblur filter is applied to the corresponding plane.

Default value for luma_power is 2. If not specified, chroma_power and alpha_power default
to the corresponding value set for luma_power.

A value of 0 will disable the effect.

10.12.1 Examples# TOC

Apply a boxblur filter with the luma, chroma, and alpha radii set to 2:

boxblur=luma_radius=2:luma_power=1
boxblur=2:1

Set the luma radius to 2, and alpha and chroma radius to 0:

boxblur=2:1:cr=0:ar=0

Set the luma and chroma radii to a fraction of the video dimension:

boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1

10.13 bwdif# TOC

Deinterlace the input video ("bwdif" stands for "Bob Weaver Deinterlacing Filter").

Motion adaptive deinterlacing based on yadif with the use of w3fdif and cubic interpolation algorithms. It
accepts the following parameters:

mode

The interlacing mode to adopt. It accepts one of the following values:

0, send_frame

Output one frame for each frame.

1, send_field

Output one frame for each field.

The default value is send_field.

parity

The picture field parity assumed for the input interlaced video. It accepts one of the following values:

0, tff

Assume the top field is first.

1, bff

Assume the bottom field is first.

-1, auto

Enable automatic detection of field parity.

The default value is auto. If the interlacing is unknown or the decoder does not export this
information, top field first will be assumed.

deint

Specify which frames to deinterlace. Accept one of the following values:

0, all

Deinterlace all frames.

1, interlaced

Only deinterlace frames marked as interlaced.

The default value is all.

10.14 chromakey# TOC

YUV colorspace color/chroma keying.

The filter accepts the following options:

color

The color which will be replaced with transparency.

similarity

Similarity percentage with the key color.

0.01 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage.

0.0 makes pixels either fully transparent, or not transparent at all.

Higher values result in semi-transparent pixels, with a higher transparency the more similar the pixels
color is to the key color.

yuv

Signals that the color passed is already in YUV instead of RGB.

Literal colors like "green" or "red" don’t make sense with this enabled anymore. This can be used to
pass exact YUV values as hexadecimal numbers.

10.14.1 Examples# TOC

Make every green pixel in the input image transparent:

ffmpeg -i input.png -vf chromakey=green out.png

Overlay a greenscreen-video on top of a static black background.

ffmpeg -f lavfi -i color=c=black:s=1280x720 -i video.mp4 -shortest -filter_complex "[1:v]chromakey=0x70de77:0.1:0.2[ckout];[0:v][ckout]overlay[out]" -map "[out]" output.mkv

10.15 ciescope# TOC

Display CIE color diagram with pixels overlaid onto it.

The filter accepts the following options:

system

Set color system.

‘ntsc, 470m’
‘ebu, 470bg’
‘smpte’
‘240m’
‘apple’
‘widergb’
‘cie1931’
‘rec709, hdtv’
‘uhdtv, rec2020’

cie

Set CIE system.

‘xyy’
‘ucs’
‘luv’

gamuts

Set what gamuts to draw.

See system option for available values.

size, s

Set ciescope size, by default set to 512.

intensity, i

Set intensity used to map input pixel values to CIE diagram.

contrast

Set contrast used to draw tongue colors that are out of active color system gamut.

corrgamma

Correct gamma displayed on scope, by default enabled.

showwhite

Show white point on CIE diagram, by default disabled.

gamma

Set input gamma. Used only with XYZ input color space.

10.16 codecview# TOC

Visualize information exported by some codecs.

Some codecs can export information through frames using side-data or other means. For example, some
MPEG based codecs export motion vectors through the export_mvs flag in the codec flags2 option.

The filter accepts the following option:

mv

Set motion vectors to visualize.

Available flags for mv are:

‘pf’

forward predicted MVs of P-frames

‘bf’

forward predicted MVs of B-frames

‘bb’

backward predicted MVs of B-frames

qp

Display quantization parameters using the chroma planes.

mv_type, mvt

Set motion vectors type to visualize. Includes MVs from all frames unless specified by frame_type
option.

Available flags for mv_type are:

‘fp’

forward predicted MVs

‘bp’

backward predicted MVs

frame_type, ft

Set frame type to visualize motion vectors of.

Available flags for frame_type are:

‘if’

intra-coded frames (I-frames)

‘pf’

predicted frames (P-frames)

‘bf’

bi-directionally predicted frames (B-frames)

10.16.1 Examples# TOC

Visualize forward predicted MVs of all frames using ffplay:

ffplay -flags2 +export_mvs input.mp4 -vf codecview=mv_type=fp

Visualize multi-directionals MVs of P and B-Frames using ffplay:

ffplay -flags2 +export_mvs input.mp4 -vf codecview=mv=pf+bf+bb

10.17 colorbalance# TOC

Modify intensity of primary colors (red, green and blue) of input frames.

The filter allows an input frame to be adjusted in the shadows, midtones or highlights regions for the
red-cyan, green-magenta or blue-yellow balance.

A positive adjustment value shifts the balance towards the primary color, a negative value towards the
complementary color.

The filter accepts the following options:

rs
gs
bs

Adjust red, green and blue shadows (darkest pixels).

rm
gm
bm

Adjust red, green and blue midtones (medium pixels).

rh
gh
bh

Adjust red, green and blue highlights (brightest pixels).

Allowed ranges for options are [-1.0, 1.0]. Defaults are 0.

10.17.1 Examples# TOC

Add red color cast to shadows:

colorbalance=rs=.3

10.18 colorkey# TOC

RGB colorspace color keying.

The filter accepts the following options:

color

The color which will be replaced with transparency.

similarity

Similarity percentage with the key color.

0.01 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage.

0.0 makes pixels either fully transparent, or not transparent at all.

Higher values result in semi-transparent pixels, with a higher transparency the more similar the pixels
color is to the key color.

10.18.1 Examples# TOC

Make every green pixel in the input image transparent:

ffmpeg -i input.png -vf colorkey=green out.png

Overlay a greenscreen-video on top of a static background image.

ffmpeg -i background.png -i video.mp4 -filter_complex "[1:v]colorkey=0x3BBD1E:0.3:0.2[ckout];[0:v][ckout]overlay[out]" -map "[out]" output.flv

10.19 colorlevels# TOC

Adjust video input frames using levels.

The filter accepts the following options:

rimin
gimin
bimin
aimin

Adjust red, green, blue and alpha input black point. Allowed ranges for options are [-1.0, 1.0].
Defaults are 0.

rimax
gimax
bimax
aimax

Adjust red, green, blue and alpha input white point. Allowed ranges for options are [-1.0, 1.0].
Defaults are 1.

Input levels are used to lighten highlights (bright tones), darken shadows (dark tones), change the
balance of bright and dark tones.

romin
gomin
bomin
aomin

Adjust red, green, blue and alpha output black point. Allowed ranges for options are [0, 1.0].
Defaults are 0.

romax
gomax
bomax
aomax

Adjust red, green, blue and alpha output white point. Allowed ranges for options are [0, 1.0].
Defaults are 1.

Output levels allows manual selection of a constrained output level range.

10.19.1 Examples# TOC

Make video output darker:

colorlevels=rimin=0.058:gimin=0.058:bimin=0.058

Increase contrast:

colorlevels=rimin=0.039:gimin=0.039:bimin=0.039:rimax=0.96:gimax=0.96:bimax=0.96

Make video output lighter:

colorlevels=rimax=0.902:gimax=0.902:bimax=0.902

Increase brightness:

colorlevels=romin=0.5:gomin=0.5:bomin=0.5

10.20 colorchannelmixer# TOC

Adjust video input frames by re-mixing color channels.

This filter modifies a color channel by adding the values associated to the other channels of the same
pixels. For example if the value to modify is red, the output value will be:

red=red*rr + blue*rb + green*rg + alpha*ra

The filter accepts the following options:

rr
rg

rb
ra

Adjust contribution of input red, green, blue and alpha channels for output red channel. Default is 1
for rr , and 0 for rg, rb and ra.

gr
gg
gb
ga

Adjust contribution of input red, green, blue and alpha channels for output green channel. Default is
1 for gg, and 0 for gr, gb and ga.

br
bg
bb
ba

Adjust contribution of input red, green, blue and alpha channels for output blue channel. Default is 1
for bb, and 0 for br, bg and ba.

ar
ag
ab
aa

Adjust contribution of input red, green, blue and alpha channels for output alpha channel. Default is 1
for aa, and 0 for ar, ag and ab.

Allowed ranges for options are [-2.0, 2.0].

10.20.1 Examples# TOC

Convert source to grayscale:

colorchannelmixer=.3:.4:.3:0:.3:.4:.3:0:.3:.4:.3

Simulate sepia tones:

colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131

10.21 colormatrix# TOC

Convert color matrix.

The filter accepts the following options:

src
dst

Specify the source and destination color matrix. Both values must be specified.

The accepted values are:

‘bt709’

BT.709

‘fcc’

FCC

‘bt601’

BT.601

‘bt470’

BT.470

‘bt470bg’

BT.470BG

‘smpte170m’

SMPTE-170M

‘smpte240m’

SMPTE-240M

‘bt2020’

BT.2020

For example to convert from BT.601 to SMPTE-240M, use the command:

colormatrix=bt601:smpte240m

10.22 colorspace# TOC

Convert colorspace, transfer characteristics or color primaries. Input video needs to have an even size.

The filter accepts the following options:

all

Specify all color properties at once.

The accepted values are:

‘bt470m’

BT.470M

‘bt470bg’

BT.470BG

‘bt601-6-525’

BT.601-6 525

‘bt601-6-625’

BT.601-6 625

‘bt709’

BT.709

‘smpte170m’

SMPTE-170M

‘smpte240m’

SMPTE-240M

‘bt2020’

BT.2020

space

Specify output colorspace.

The accepted values are:

‘bt709’

BT.709

‘fcc’

FCC

‘bt470bg’

BT.470BG or BT.601-6 625

‘smpte170m’

SMPTE-170M or BT.601-6 525

‘smpte240m’

SMPTE-240M

‘ycgco’

YCgCo

‘bt2020ncl’

BT.2020 with non-constant luminance

trc

Specify output transfer characteristics.

The accepted values are:

‘bt709’

BT.709

‘bt470m’

BT.470M

‘bt470bg’

BT.470BG

‘gamma22’

Constant gamma of 2.2

‘gamma28’

Constant gamma of 2.8

‘smpte170m’

SMPTE-170M, BT.601-6 625 or BT.601-6 525

‘smpte240m’

SMPTE-240M

‘srgb’

SRGB

‘iec61966-2-1’

iec61966-2-1

‘iec61966-2-4’

iec61966-2-4

‘xvycc’

xvycc

‘bt2020-10’

BT.2020 for 10-bits content

‘bt2020-12’

BT.2020 for 12-bits content

primaries

Specify output color primaries.

The accepted values are:

‘bt709’

BT.709

‘bt470m’

BT.470M

‘bt470bg’

BT.470BG or BT.601-6 625

‘smpte170m’

SMPTE-170M or BT.601-6 525

‘smpte240m’

SMPTE-240M

‘film’

film

‘smpte431’

SMPTE-431

‘smpte432’

SMPTE-432

‘bt2020’

BT.2020

‘jedec-p22’

JEDEC P22 phosphors

range

Specify output color range.

The accepted values are:

‘tv’

TV (restricted) range

‘mpeg’

MPEG (restricted) range

‘pc’

PC (full) range

‘jpeg’

JPEG (full) range

format

Specify output color format.

The accepted values are:

‘yuv420p’

YUV 4:2:0 planar 8-bits

‘yuv420p10’

YUV 4:2:0 planar 10-bits

‘yuv420p12’

YUV 4:2:0 planar 12-bits

‘yuv422p’

YUV 4:2:2 planar 8-bits

‘yuv422p10’

YUV 4:2:2 planar 10-bits

‘yuv422p12’

YUV 4:2:2 planar 12-bits

‘yuv444p’

YUV 4:4:4 planar 8-bits

‘yuv444p10’

YUV 4:4:4 planar 10-bits

‘yuv444p12’

YUV 4:4:4 planar 12-bits

fast

Do a fast conversion, which skips gamma/primary correction. This will take significantly less CPU,
but will be mathematically incorrect. To get output compatible with that produced by the colormatrix
filter, use fast=1.

dither

Specify dithering mode.

The accepted values are:

‘none’

No dithering

‘fsb’

Floyd-Steinberg dithering

wpadapt

Whitepoint adaptation mode.

The accepted values are:

‘bradford’

Bradford whitepoint adaptation

‘vonkries’

von Kries whitepoint adaptation

‘identity’

identity whitepoint adaptation (i.e. no whitepoint adaptation)

iall

Override all input properties at once. Same accepted values as all.

ispace

Override input colorspace. Same accepted values as space.

iprimaries

Override input color primaries. Same accepted values as primaries.

itrc

Override input transfer characteristics. Same accepted values as trc.

irange

Override input color range. Same accepted values as range.

The filter converts the transfer characteristics, color space and color primaries to the specified user values.
The output value, if not specified, is set to a default value based on the "all" property. If that property is
also not specified, the filter will log an error. The output color range and format default to the same value
as the input color range and format. The input transfer characteristics, color space, color primaries and
color range should be set on the input data. If any of these are missing, the filter will log an error and no
conversion will take place.

For example to convert the input to SMPTE-240M, use the command:

colorspace=smpte240m

10.23 convolution# TOC

Apply convolution of 3x3, 5x5, 7x7 or horizontal/vertical up to 49 elements.

The filter accepts the following options:

0m
1m
2m
3m

Set matrix for each plane. Matrix is sequence of 9, 25 or 49 signed integers in square mode, and from
1 to 49 odd number of signed integers in row mode.

0rdiv
1rdiv
2rdiv
3rdiv

Set multiplier for calculated value for each plane. If unset or 0, it will be sum of all matrix elements.

0bias
1bias
2bias
3bias

Set bias for each plane. This value is added to the result of the multiplication. Useful for making the
overall image brighter or darker. Default is 0.0.

0mode
1mode
2mode
3mode

Set matrix mode for each plane. Can be square, row or column. Default is square.

10.23.1 Examples# TOC

Apply sharpen:

convolution="0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0"

Apply blur:

convolution="1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1/9:1/9:1/9:1/9"

Apply edge enhance:

convolution="0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:5:1:1:1:0:128:128:128"

Apply edge detect:

convolution="0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:5:5:5:1:0:128:128:128"

Apply laplacian edge detector which includes diagonals:

convolution="1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:5:5:5:1:0:128:128:0"

Apply emboss:

convolution="-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2"

10.24 convolve# TOC

Apply 2D convolution of video stream in frequency domain using second stream as impulse.

The filter accepts the following options:

planes

Set which planes to process.

impulse

Set which impulse video frames will be processed, can be first or all. Default is all.

The convolve filter also supports the framesync options.

10.25 copy# TOC

Copy the input video source unchanged to the output. This is mainly useful for testing purposes.

10.26 coreimage# TOC

Video filtering on GPU using Apple’s CoreImage API on OSX.

Hardware acceleration is based on an OpenGL context. Usually, this means it is processed by video
hardware. However, software-based OpenGL implementations exist which means there is no guarantee for
hardware processing. It depends on the respective OSX.

There are many filters and image generators provided by Apple that come with a large variety of options.
The filter has to be referenced by its name along with its options.

The coreimage filter accepts the following options:

list_filters

List all available filters and generators along with all their respective options as well as possible
minimum and maximum values along with the default values.

list_filters=true

filter

Specify all filters by their respective name and options. Use list_filters to determine all valid filter
names and options. Numerical options are specified by a float value and are automatically clamped to
their respective value range. Vector and color options have to be specified by a list of space separated
float values. Character escaping has to be done. A special option name default is available to use
default options for a filter.

It is required to specify either default or at least one of the filter options. All omitted options are
used with their default values. The syntax of the filter string is as follows:

filter=<NAME>@<OPTION>=<VALUE>[@<OPTION>=<VALUE>][@...][#<NAME>@<OPTION>=<VALUE>[@<OPTION>=<VALUE>][@...]][#...]

output_rect

Specify a rectangle where the output of the filter chain is copied into the input image. It is given by a
list of space separated float values:

output_rect=x\ y\ width\ height

If not given, the output rectangle equals the dimensions of the input image. The output rectangle is
automatically cropped at the borders of the input image. Negative values are valid for each
component.

output_rect=25\ 25\ 100\ 100

Several filters can be chained for successive processing without GPU-HOST transfers allowing for fast
processing of complex filter chains. Currently, only filters with zero (generators) or exactly one (filters)
input image and one output image are supported. Also, transition filters are not yet usable as intended.

Some filters generate output images with additional padding depending on the respective filter kernel. The
padding is automatically removed to ensure the filter output has the same size as the input image.

For image generators, the size of the output image is determined by the previous output image of the filter
chain or the input image of the whole filterchain, respectively. The generators do not use the pixel
information of this image to generate their output. However, the generated output is blended onto this
image, resulting in partial or complete coverage of the output image.

The coreimagesrc video source can be used for generating input images which are directly fed into the
filter chain. By using it, providing input images by another video source or an input video is not required.

10.26.1 Examples# TOC

List all filters available:

coreimage=list_filters=true

Use the CIBoxBlur filter with default options to blur an image:

coreimage=filter=CIBoxBlur@default

Use a filter chain with CISepiaTone at default values and CIVignetteEffect with its center at 100x100
and a radius of 50 pixels:

coreimage=filter=CIBoxBlur@default#CIVignetteEffect@inputCenter=100\ 100@inputRadius=50

Use nullsrc and CIQRCodeGenerator to create a QR code for the FFmpeg homepage, given as
complete and escaped command-line for Apple’s standard bash shell:

ffmpeg -f lavfi -i nullsrc=s=100x100,coreimage=filter=CIQRCodeGenerator@inputMessage=https\\\\\://FFmpeg.org/@inputCorrectionLevel=H -frames:v 1 QRCode.png

10.27 crop# TOC

Crop the input video to given dimensions.

It accepts the following parameters:

w, out_w

The width of the output video. It defaults to iw. This expression is evaluated only once during the
filter configuration, or when the ‘w’ or ‘out_w’ command is sent.

h, out_h

The height of the output video. It defaults to ih. This expression is evaluated only once during the
filter configuration, or when the ‘h’ or ‘out_h’ command is sent.

x

The horizontal position, in the input video, of the left edge of the output video. It defaults to
(in_w-out_w)/2. This expression is evaluated per-frame.

y

The vertical position, in the input video, of the top edge of the output video. It defaults to
(in_h-out_h)/2. This expression is evaluated per-frame.

keep_aspect

If set to 1 will force the output display aspect ratio to be the same of the input, by changing the output
sample aspect ratio. It defaults to 0.

exact

Enable exact cropping. If enabled, subsampled videos will be cropped at exact width/height/x/y as
specified and will not be rounded to nearest smaller value. It defaults to 0.

The out_w, out_h, x, y parameters are expressions containing the following constants:

x
y

The computed values for x and y. They are evaluated for each new frame.

in_w
in_h

The input width and height.

iw
ih

These are the same as in_w and in_h.

out_w
out_h

The output (cropped) width and height.

ow
oh

These are the same as out_w and out_h.

a

same as iw / ih

sar

input sample aspect ratio

dar

input display aspect ratio, it is the same as (iw / ih) * sar

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

n

The number of the input frame, starting from 0.

pos

the position in the file of the input frame, NAN if unknown

t

The timestamp expressed in seconds. It’s NAN if the input timestamp is unknown.

The expression for out_w may depend on the value of out_h, and the expression for out_h may depend on
out_w, but they cannot depend on x and y, as x and y are evaluated after out_w and out_h.

The x and y parameters specify the expressions for the position of the top-left corner of the output
(non-cropped) area. They are evaluated for each frame. If the evaluated value is not valid, it is
approximated to the nearest valid value.

The expression for x may depend on y, and the expression for y may depend on x.

10.27.1 Examples# TOC

Crop area with size 100x100 at position (12,34).

crop=100:100:12:34

Using named options, the example above becomes:

crop=w=100:h=100:x=12:y=34

Crop the central input area with size 100x100:

crop=100:100

Crop the central input area with size 2/3 of the input video:

crop=2/3*in_w:2/3*in_h

Crop the input video central square:

crop=out_w=in_h
crop=in_h

Delimit the rectangle with the top-left corner placed at position 100:100 and the right-bottom corner
corresponding to the right-bottom corner of the input image.

crop=in_w-100:in_h-100:100:100

Crop 10 pixels from the left and right borders, and 20 pixels from the top and bottom borders

crop=in_w-2*10:in_h-2*20

Keep only the bottom right quarter of the input image:

crop=in_w/2:in_h/2:in_w/2:in_h/2

Crop height for getting Greek harmony:

crop=in_w:1/PHI*in_w

Apply trembling effect:

crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)

Apply erratic camera effect depending on timestamp:

crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"

Set x depending on the value of y:

crop=in_w/2:in_h/2:y:10+10*sin(n/10)

10.27.2 Commands# TOC

This filter supports the following commands:

w, out_w
h, out_h
x
y

Set width/height of the output video and the horizontal/vertical position in the input video. The
command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

10.28 cropdetect# TOC

Auto-detect the crop size.

It calculates the necessary cropping parameters and prints the recommended parameters via the logging
system. The detected dimensions correspond to the non-black area of the input video.

It accepts the following parameters:

limit

Set higher black value threshold, which can be optionally specified from nothing (0) to everything
(255 for 8-bit based formats). An intensity value greater to the set value is considered non-black. It
defaults to 24. You can also specify a value between 0.0 and 1.0 which will be scaled depending on
the bitdepth of the pixel format.

round

The value which the width/height should be divisible by. It defaults to 16. The offset is automatically
adjusted to center the video. Use 2 to get only even dimensions (needed for 4:2:2 video). 16 is best
when encoding to most video codecs.

reset_count, reset

Set the counter that determines after how many frames cropdetect will reset the previously detected
largest video area and start over to detect the current optimal crop area. Default value is 0.

This can be useful when channel logos distort the video area. 0 indicates ’never reset’, and returns the
largest area encountered during playback.

10.29 curves# TOC

Apply color adjustments using curves.

This filter is similar to the Adobe Photoshop and GIMP curves tools. Each component (red, green and
blue) has its values defined by N key points tied from each other using a smooth curve. The x-axis
represents the pixel values from the input frame, and the y-axis the new pixel values to be set for the
output frame.

By default, a component curve is defined by the two points (0;0) and (1;1). This creates a straight line
where each original pixel value is "adjusted" to its own value, which means no change to the image.

The filter allows you to redefine these two points and add some more. A new curve (using a natural cubic
spline interpolation) will be define to pass smoothly through all these new coordinates. The new defined
points needs to be strictly increasing over the x-axis, and their x and y values must be in the [0;1] interval.
If the computed curves happened to go outside the vector spaces, the values will be clipped accordingly.

The filter accepts the following options:

preset

Select one of the available color presets. This option can be used in addition to the r, g, b
parameters; in this case, the later options takes priority on the preset values. Available presets are:

‘none’
‘color_negative’
‘cross_process’
‘darker’
‘increase_contrast’
‘lighter’
‘linear_contrast’
‘medium_contrast’
‘negative’
‘strong_contrast’
‘vintage’

Default is none.

master, m

Set the master key points. These points will define a second pass mapping. It is sometimes called a
"luminance" or "value" mapping. It can be used with r, g, b or all since it acts like a
post-processing LUT.

red, r

Set the key points for the red component.

green, g

Set the key points for the green component.

blue, b

Set the key points for the blue component.

all

Set the key points for all components (not including master). Can be used in addition to the other key
points component options. In this case, the unset component(s) will fallback on this all setting.

psfile

Specify a Photoshop curves file (.acv) to import the settings from.

plot

Save Gnuplot script of the curves in specified file.

To avoid some filtergraph syntax conflicts, each key points list need to be defined using the following
syntax: x0/y0 x1/y1 x2/y2

10.29.1 Examples# TOC

Increase slightly the middle level of blue:

curves=blue=’0/0 0.5/0.58 1/1’

Vintage effect:

curves=r=’0/0.11 .42/.51 1/0.95’:g=’0/0 0.50/0.48 1/1’:b=’0/0.22 .49/.44 1/0.8’

Here we obtain the following coordinates for each components:

red

(0;0.11) (0.42;0.51) (1;0.95)

green

(0;0) (0.50;0.48) (1;1)

blue

(0;0.22) (0.49;0.44) (1;0.80)

The previous example can also be achieved with the associated built-in preset:

curves=preset=vintage

Or simply:

curves=vintage

Use a Photoshop preset and redefine the points of the green component:

curves=psfile=’MyCurvesPresets/purple.acv’:green=’0/0 0.45/0.53 1/1’

Check out the curves of the cross_process profile using ffmpeg and gnuplot:

ffmpeg -f lavfi -i color -vf curves=cross_process:plot=/tmp/curves.plt -frames:v 1 -f null -
gnuplot -p /tmp/curves.plt

10.30 datascope# TOC

Video data analysis filter.

This filter shows hexadecimal pixel values of part of video.

The filter accepts the following options:

size, s

Set output video size.

x

Set x offset from where to pick pixels.

y

Set y offset from where to pick pixels.

mode

Set scope mode, can be one of the following:

‘mono’

Draw hexadecimal pixel values with white color on black background.

‘color’

Draw hexadecimal pixel values with input video pixel color on black background.

‘color2’

Draw hexadecimal pixel values on color background picked from input video, the text color is
picked in such way so its always visible.

axis

Draw rows and columns numbers on left and top of video.

opacity

Set background opacity.

10.31 dctdnoiz# TOC

Denoise frames using 2D DCT (frequency domain filtering).

This filter is not designed for real time.

The filter accepts the following options:

sigma, s

Set the noise sigma constant.

This sigma defines a hard threshold of 3 * sigma; every DCT coefficient (absolute value) below
this threshold with be dropped.

If you need a more advanced filtering, see expr.

Default is 0.

overlap

Set number overlapping pixels for each block. Since the filter can be slow, you may want to reduce
this value, at the cost of a less effective filter and the risk of various artefacts.

If the overlapping value doesn’t permit processing the whole input width or height, a warning will be
displayed and according borders won’t be denoised.

Default value is blocksize-1, which is the best possible setting.

expr, e

Set the coefficient factor expression.

For each coefficient of a DCT block, this expression will be evaluated as a multiplier value for the
coefficient.

If this is option is set, the sigma option will be ignored.

The absolute value of the coefficient can be accessed through the c variable.

n

Set the blocksize using the number of bits. 1<<n defines the blocksize, which is the width and height
of the processed blocks.

The default value is 3 (8x8) and can be raised to 4 for a blocksize of 16x16. Note that changing this
setting has huge consequences on the speed processing. Also, a larger block size does not necessarily
means a better de-noising.

10.31.1 Examples# TOC

Apply a denoise with a sigma of 4.5:

dctdnoiz=4.5

The same operation can be achieved using the expression system:

dctdnoiz=e=’gte(c, 4.5*3)’

Violent denoise using a block size of 16x16:

dctdnoiz=15:n=4

10.32 deband# TOC

Remove banding artifacts from input video. It works by replacing banded pixels with average value of
referenced pixels.

The filter accepts the following options:

1thr
2thr
3thr
4thr

Set banding detection threshold for each plane. Default is 0.02. Valid range is 0.00003 to 0.5. If
difference between current pixel and reference pixel is less than threshold, it will be considered as
banded.

range, r

Banding detection range in pixels. Default is 16. If positive, random number in range 0 to set value
will be used. If negative, exact absolute value will be used. The range defines square of four pixels
around current pixel.

direction, d

Set direction in radians from which four pixel will be compared. If positive, random direction from 0
to set direction will be picked. If negative, exact of absolute value will be picked. For example
direction 0, -PI or -2*PI radians will pick only pixels on same row and -PI/2 will pick only pixels on
same column.

blur, b

If enabled, current pixel is compared with average value of all four surrounding pixels. The default is
enabled. If disabled current pixel is compared with all four surrounding pixels. The pixel is
considered banded if only all four differences with surrounding pixels are less than threshold.

coupling, c

If enabled, current pixel is changed if and only if all pixel components are banded, e.g. banding
detection threshold is triggered for all color components. The default is disabled.

10.33 deblock# TOC

Remove blocking artifacts from input video.

The filter accepts the following options:

filter

Set filter type, can be weak or strong. Default is strong. This controls what kind of deblocking is
applied.

block

Set size of block, allowed range is from 4 to 512. Default is 8.

alpha
beta
gamma
delta

Set blocking detection thresholds. Allowed range is 0 to 1. Defaults are: 0.098 for alpha and 0.05 for
the rest. Using higher threshold gives more deblocking strength. Setting alpha controls threshold
detection at exact edge of block. Remaining options controls threshold detection near the edge. Each
one for below/above or left/right. Setting any of those to 0 disables deblocking.

planes

Set planes to filter. Default is to filter all available planes.

10.33.1 Examples# TOC

Deblock using weak filter and block size of 4 pixels.

deblock=filter=weak:block=4

Deblock using strong filter, block size of 4 pixels and custom thresholds for deblocking more edges.

deblock=filter=strong:block=4:alpha=0.12:beta=0.07:gamma=0.06:delta=0.05

Similar as above, but filter only first plane.

deblock=filter=strong:block=4:alpha=0.12:beta=0.07:gamma=0.06:delta=0.05:planes=1

Similar as above, but filter only second and third plane.

deblock=filter=strong:block=4:alpha=0.12:beta=0.07:gamma=0.06:delta=0.05:planes=6

10.34 decimate# TOC

Drop duplicated frames at regular intervals.

The filter accepts the following options:

cycle

Set the number of frames from which one will be dropped. Setting this to N means one frame in every
batch of N frames will be dropped. Default is 5.

dupthresh

Set the threshold for duplicate detection. If the difference metric for a frame is less than or equal to
this value, then it is declared as duplicate. Default is 1.1

scthresh

Set scene change threshold. Default is 15.

blockx
blocky

Set the size of the x and y-axis blocks used during metric calculations. Larger blocks give better noise
suppression, but also give worse detection of small movements. Must be a power of two. Default is
32.

ppsrc

Mark main input as a pre-processed input and activate clean source input stream. This allows the
input to be pre-processed with various filters to help the metrics calculation while keeping the frame
selection lossless. When set to 1, the first stream is for the pre-processed input, and the second stream
is the clean source from where the kept frames are chosen. Default is 0.

chroma

Set whether or not chroma is considered in the metric calculations. Default is 1.

10.35 deconvolve# TOC

Apply 2D deconvolution of video stream in frequency domain using second stream as impulse.

The filter accepts the following options:

planes

Set which planes to process.

impulse

Set which impulse video frames will be processed, can be first or all. Default is all.

noise

Set noise when doing divisions. Default is 0.0000001. Useful when width and height are not same
and not power of 2 or if stream prior to convolving had noise.

The deconvolve filter also supports the framesync options.

10.36 deflate# TOC

Apply deflate effect to the video.

This filter replaces the pixel by the local(3x3) average by taking into account only values lower than the
pixel.

It accepts the following options:

threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

10.37 deflicker# TOC

Remove temporal frame luminance variations.

It accepts the following options:

size, s

Set moving-average filter size in frames. Default is 5. Allowed range is 2 - 129.

mode, m

Set averaging mode to smooth temporal luminance variations.

Available values are:

‘am’

Arithmetic mean

‘gm’

Geometric mean

‘hm’

Harmonic mean

‘qm’

Quadratic mean

‘cm’

Cubic mean

‘pm’

Power mean

‘median’

Median

bypass

Do not actually modify frame. Useful when one only wants metadata.

10.38 dejudder# TOC

Remove judder produced by partially interlaced telecined content.

Judder can be introduced, for instance, by pullup filter. If the original source was partially telecined
content then the output of pullup,dejudder will have a variable frame rate. May change the recorded
frame rate of the container. Aside from that change, this filter will not affect constant frame rate video.

The option available in this filter is:

cycle

Specify the length of the window over which the judder repeats.

Accepts any integer greater than 1. Useful values are:

‘4’

If the original was telecined from 24 to 30 fps (Film to NTSC).

‘5’

If the original was telecined from 25 to 30 fps (PAL to NTSC).

‘20’

If a mixture of the two.

The default is ‘4’.

10.39 delogo# TOC

Suppress a TV station logo by a simple interpolation of the surrounding pixels. Just set a rectangle
covering the logo and watch it disappear (and sometimes something even uglier appear - your mileage
may vary).

It accepts the following parameters:

x
y

Specify the top left corner coordinates of the logo. They must be specified.

w
h

Specify the width and height of the logo to clear. They must be specified.

band, t

Specify the thickness of the fuzzy edge of the rectangle (added to w and h). The default value is 1.
This option is deprecated, setting higher values should no longer be necessary and is not
recommended.

show

When set to 1, a green rectangle is drawn on the screen to simplify finding the right x, y, w, and h
parameters. The default value is 0.

The rectangle is drawn on the outermost pixels which will be (partly) replaced with interpolated
values. The values of the next pixels immediately outside this rectangle in each direction will be used
to compute the interpolated pixel values inside the rectangle.

10.39.1 Examples# TOC

Set a rectangle covering the area with top left corner coordinates 0,0 and size 100x77, and a band of
size 10:

delogo=x=0:y=0:w=100:h=77:band=10

10.40 deshake# TOC

Attempt to fix small changes in horizontal and/or vertical shift. This filter helps remove camera shake
from hand-holding a camera, bumping a tripod, moving on a vehicle, etc.

The filter accepts the following options:

x
y
w
h

Specify a rectangular area where to limit the search for motion vectors. If desired the search for
motion vectors can be limited to a rectangular area of the frame defined by its top left corner, width
and height. These parameters have the same meaning as the drawbox filter which can be used to
visualise the position of the bounding box.

This is useful when simultaneous movement of subjects within the frame might be confused for
camera motion by the motion vector search.

If any or all of x, y, w and h are set to -1 then the full frame is used. This allows later options to be set
without specifying the bounding box for the motion vector search.

Default - search the whole frame.

rx
ry

Specify the maximum extent of movement in x and y directions in the range 0-64 pixels. Default 16.

edge

Specify how to generate pixels to fill blanks at the edge of the frame. Available values are:

‘blank, 0’

Fill zeroes at blank locations

‘original, 1’

Original image at blank locations

‘clamp, 2’

Extruded edge value at blank locations

‘mirror, 3’

Mirrored edge at blank locations

Default value is ‘mirror’.

blocksize

Specify the blocksize to use for motion search. Range 4-128 pixels, default 8.

contrast

Specify the contrast threshold for blocks. Only blocks with more than the specified contrast
(difference between darkest and lightest pixels) will be considered. Range 1-255, default 125.

search

Specify the search strategy. Available values are:

‘exhaustive, 0’

Set exhaustive search

‘less, 1’

Set less exhaustive search.

Default value is ‘exhaustive’.

filename

If set then a detailed log of the motion search is written to the specified file.

10.41 despill# TOC

Remove unwanted contamination of foreground colors, caused by reflected color of greenscreen or
bluescreen.

This filter accepts the following options:

type

Set what type of despill to use.

mix

Set how spillmap will be generated.

expand

Set how much to get rid of still remaining spill.

red

Controls amount of red in spill area.

green

Controls amount of green in spill area. Should be -1 for greenscreen.

blue

Controls amount of blue in spill area. Should be -1 for bluescreen.

brightness

Controls brightness of spill area, preserving colors.

alpha

Modify alpha from generated spillmap.

10.42 detelecine# TOC

Apply an exact inverse of the telecine operation. It requires a predefined pattern specified using the pattern
option which must be the same as that passed to the telecine filter.

This filter accepts the following options:

first_field
‘top, t’

top field first

‘bottom, b’

bottom field first The default value is top.

pattern

A string of numbers representing the pulldown pattern you wish to apply. The default value is 23.

start_frame

A number representing position of the first frame with respect to the telecine pattern. This is to be
used if the stream is cut. The default value is 0.

10.43 dilation# TOC

Apply dilation effect to the video.

This filter replaces the pixel by the local(3x3) maximum.

It accepts the following options:

threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

coordinates

Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

Flags to local 3x3 coordinates maps like this:

1 2 3 4 5 6 7 8

10.44 displace# TOC

Displace pixels as indicated by second and third input stream.

It takes three input streams and outputs one stream, the first input is the source, and second and third input
are displacement maps.

The second input specifies how much to displace pixels along the x-axis, while the third input specifies
how much to displace pixels along the y-axis. If one of displacement map streams terminates, last frame
from that displacement map will be used.

Note that once generated, displacements maps can be reused over and over again.

A description of the accepted options follows.

edge

Set displace behavior for pixels that are out of range.

Available values are:

‘blank’

Missing pixels are replaced by black pixels.

‘smear’

Adjacent pixels will spread out to replace missing pixels.

‘wrap’

Out of range pixels are wrapped so they point to pixels of other side.

‘mirror’

Out of range pixels will be replaced with mirrored pixels.

Default is ‘smear’.

10.44.1 Examples# TOC

Add ripple effect to rgb input of video size hd720:
ffmpeg -i INPUT -f lavfi -i nullsrc=s=hd720,lutrgb=128:128:128 -f lavfi -i nullsrc=s=hd720,geq=’r=128+30*sin(2*PI*X/400+T):g=128+30*sin(2*PI*X/400+T):b=128+30*sin(2*PI*X/400+T)’ -lavfi ’[0][1][2]displace’ OUTPUT

Add wave effect to rgb input of video size hd720:
ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq=’r=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T)):g=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T)):b=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T))’ -lavfi ’[1]split[x][y],[0][x][y]displace’ OUTPUT

10.45 drawbox# TOC

Draw a colored box on the input image.

It accepts the following parameters:

x
y

The expressions which specify the top left corner coordinates of the box. It defaults to 0.

width, w
height, h

The expressions which specify the width and height of the box; if 0 they are interpreted as the input
width and height. It defaults to 0.

color, c

Specify the color of the box to write. For the general syntax of this option, check the
(ffmpeg-utils)"Color" section in the ffmpeg-utils manual. If the special value invert is used, the
box edge color is the same as the video with inverted luma.

thickness, t

The expression which sets the thickness of the box edge. A value of fill will create a filled box.
Default value is 3.

See below for the list of accepted constants.

replace

Applicable if the input has alpha. With value 1, the pixels of the painted box will overwrite the
video’s color and alpha pixels. Default is 0, which composites the box onto the input, leaving the
video’s alpha intact.

The parameters for x, y, w and h and t are expressions containing the following constants:

dar

The input display aspect ratio, it is the same as (w / h) * sar.

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

in_h, ih
in_w, iw

The input width and height.

sar

The input sample aspect ratio.

x
y

The x and y offset coordinates where the box is drawn.

w
h

The width and height of the drawn box.

t

The thickness of the drawn box.

These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example
specify y=x/dar or h=w/dar.

10.45.1 Examples# TOC

Draw a black box around the edge of the input image:

drawbox

Draw a box with color red and an opacity of 50%:

drawbox=10:20:200:60:red@0.5

The previous example can be specified as:

drawbox=x=10:y=20:w=200:h=60:color=red@0.5

Fill the box with pink color:

drawbox=x=10:y=10:w=100:h=100:color=pink@0.5:t=fill

Draw a 2-pixel red 2.40:1 mask:

drawbox=x=-t:y=0.5*(ih-iw/2.4)-t:w=iw+t*2:h=iw/2.4+t*2:t=2:c=red

10.46 drawgrid# TOC

Draw a grid on the input image.

It accepts the following parameters:

x
y

The expressions which specify the coordinates of some point of grid intersection (meant to configure
offset). Both default to 0.

width, w
height, h

The expressions which specify the width and height of the grid cell, if 0 they are interpreted as the
input width and height, respectively, minus thickness, so image gets framed. Default to 0.

color, c

Specify the color of the grid. For the general syntax of this option, check the (ffmpeg-utils)"Color"
section in the ffmpeg-utils manual. If the special value invert is used, the grid color is the same as
the video with inverted luma.

thickness, t

The expression which sets the thickness of the grid line. Default value is 1.

See below for the list of accepted constants.

replace

Applicable if the input has alpha. With 1 the pixels of the painted grid will overwrite the video’s
color and alpha pixels. Default is 0, which composites the grid onto the input, leaving the video’s
alpha intact.

The parameters for x, y, w and h and t are expressions containing the following constants:

dar

The input display aspect ratio, it is the same as (w / h) * sar.

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

in_h, ih
in_w, iw

The input grid cell width and height.

sar

The input sample aspect ratio.

x
y

The x and y coordinates of some point of grid intersection (meant to configure offset).

w
h

The width and height of the drawn cell.

t

The thickness of the drawn cell.

These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example
specify y=x/dar or h=w/dar.

10.46.1 Examples# TOC

Draw a grid with cell 100x100 pixels, thickness 2 pixels, with color red and an opacity of 50%:

drawgrid=width=100:height=100:thickness=2:color=red@0.5

Draw a white 3x3 grid with an opacity of 50%:

drawgrid=w=iw/3:h=ih/3:t=2:c=white@0.5

10.47 drawtext# TOC

Draw a text string or text from a specified file on top of a video, using the libfreetype library.

To enable compilation of this filter, you need to configure FFmpeg with --enable-libfreetype. To
enable default font fallback and the font option you need to configure FFmpeg with
--enable-libfontconfig. To enable the text_shaping option, you need to configure FFmpeg with
--enable-libfribidi.

10.47.1 Syntax# TOC

It accepts the following parameters:

box

Used to draw a box around text using the background color. The value must be either 1 (enable) or 0
(disable). The default value of box is 0.

boxborderw

Set the width of the border to be drawn around the box using boxcolor. The default value of
boxborderw is 0.

boxcolor

The color to be used for drawing box around text. For the syntax of this option, check the
(ffmpeg-utils)"Color" section in the ffmpeg-utils manual.

The default value of boxcolor is "white".

line_spacing

Set the line spacing in pixels of the border to be drawn around the box using box. The default value of
line_spacing is 0.

borderw

Set the width of the border to be drawn around the text using bordercolor. The default value of
borderw is 0.

bordercolor

Set the color to be used for drawing border around text. For the syntax of this option, check the
(ffmpeg-utils)"Color" section in the ffmpeg-utils manual.

The default value of bordercolor is "black".

expansion

Select how the text is expanded. Can be either none, strftime (deprecated) or normal (default).
See the Text expansion section below for details.

basetime

Set a start time for the count. Value is in microseconds. Only applied in the deprecated strftime
expansion mode. To emulate in normal expansion mode use the pts function, supplying the start
time (in seconds) as the second argument.

fix_bounds

If true, check and fix text coords to avoid clipping.

fontcolor

The color to be used for drawing fonts. For the syntax of this option, check the (ffmpeg-utils)"Color"
section in the ffmpeg-utils manual.

The default value of fontcolor is "black".

fontcolor_expr

String which is expanded the same way as text to obtain dynamic fontcolor value. By default this
option has empty value and is not processed. When this option is set, it overrides fontcolor option.

font

The font family to be used for drawing text. By default Sans.

fontfile

The font file to be used for drawing text. The path must be included. This parameter is mandatory if
the fontconfig support is disabled.

alpha

Draw the text applying alpha blending. The value can be a number between 0.0 and 1.0. The
expression accepts the same variables x, y as well. The default value is 1. Please see fontcolor_expr.

fontsize

The font size to be used for drawing text. The default value of fontsize is 16.

text_shaping

If set to 1, attempt to shape the text (for example, reverse the order of right-to-left text and join
Arabic characters) before drawing it. Otherwise, just draw the text exactly as given. By default 1 (if
supported).

ft_load_flags

The flags to be used for loading the fonts.

The flags map the corresponding flags supported by libfreetype, and are a combination of the
following values:

default
no_scale
no_hinting
render
no_bitmap
vertical_layout
force_autohint
crop_bitmap
pedantic
ignore_global_advance_width
no_recurse
ignore_transform
monochrome
linear_design
no_autohint

Default value is "default".

For more information consult the documentation for the FT_LOAD_* libfreetype flags.

shadowcolor

The color to be used for drawing a shadow behind the drawn text. For the syntax of this option, check
the (ffmpeg-utils)"Color" section in the ffmpeg-utils manual.

The default value of shadowcolor is "black".

shadowx
shadowy

The x and y offsets for the text shadow position with respect to the position of the text. They can be
either positive or negative values. The default value for both is "0".

start_number

The starting frame number for the n/frame_num variable. The default value is "0".

tabsize

The size in number of spaces to use for rendering the tab. Default value is 4.

timecode

Set the initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used with or without text
parameter. timecode_rate option must be specified.

timecode_rate, rate, r

Set the timecode frame rate (timecode only). Value will be rounded to nearest integer. Minimum
value is "1". Drop-frame timecode is supported for frame rates 30 & 60.

tc24hmax

If set to 1, the output of the timecode option will wrap around at 24 hours. Default is 0 (disabled).

text

The text string to be drawn. The text must be a sequence of UTF-8 encoded characters. This
parameter is mandatory if no file is specified with the parameter textfile.

textfile

A text file containing text to be drawn. The text must be a sequence of UTF-8 encoded characters.

This parameter is mandatory if no text string is specified with the parameter text.

If both text and textfile are specified, an error is thrown.

reload

If set to 1, the textfile will be reloaded before each frame. Be sure to update it atomically, or it may be
read partially, or even fail.

x
y

The expressions which specify the offsets where text will be drawn within the video frame. They are
relative to the top/left border of the output image.

The default value of x and y is "0".

See below for the list of accepted constants and functions.

The parameters for x and y are expressions containing the following constants and functions:

dar

input display aspect ratio, it is the same as (w / h) * sar

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

line_h, lh

the height of each text line

main_h, h, H

the input height

main_w, w, W

the input width

max_glyph_a, ascent

the maximum distance from the baseline to the highest/upper grid coordinate used to place a glyph
outline point, for all the rendered glyphs. It is a positive value, due to the grid’s orientation with the Y
axis upwards.

max_glyph_d, descent

the maximum distance from the baseline to the lowest grid coordinate used to place a glyph outline
point, for all the rendered glyphs. This is a negative value, due to the grid’s orientation, with the Y axis
upwards.

max_glyph_h

maximum glyph height, that is the maximum height for all the glyphs contained in the rendered text,
it is equivalent to ascent - descent.

max_glyph_w

maximum glyph width, that is the maximum width for all the glyphs contained in the rendered text

n

the number of input frame, starting from 0

rand(min, max)

return a random number included between min and max

sar

The input sample aspect ratio.

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

text_h, th

the height of the rendered text

text_w, tw

the width of the rendered text

x
y

the x and y offset coordinates where the text is drawn.

These parameters allow the x and y expressions to refer each other, so you can for example specify
y=x/dar.

10.47.2 Text expansion# TOC

If expansion is set to strftime, the filter recognizes strftime() sequences in the provided text and
expands them accordingly. Check the documentation of strftime(). This feature is deprecated.

If expansion is set to none, the text is printed verbatim.

If expansion is set to normal (which is the default), the following expansion mechanism is used.

The backslash character ‘\’, followed by any character, always expands to the second character.

Sequences of the form %{...} are expanded. The text between the braces is a function name, possibly
followed by arguments separated by ’:’. If the arguments contain special characters or delimiters (’:’ or
’}’), they should be escaped.

Note that they probably must also be escaped as the value for the text option in the filter argument string
and as the filter argument in the filtergraph description, and possibly also for the shell, that makes up to
four levels of escaping; using a text file avoids these problems.

The following functions are available:

expr, e

The expression evaluation result.

It must take one argument specifying the expression to be evaluated, which accepts the same
constants and functions as the x and y values. Note that not all constants should be used, for example
the text size is not known when evaluating the expression, so the constants text_w and text_h will
have an undefined value.

expr_int_format, eif

Evaluate the expression’s value and output as formatted integer.

The first argument is the expression to be evaluated, just as for the expr function. The second
argument specifies the output format. Allowed values are ‘x’, ‘X’, ‘d’ and ‘u’. They are treated
exactly as in the printf function. The third parameter is optional and sets the number of positions
taken by the output. It can be used to add padding with zeros from the left.

gmtime

The time at which the filter is running, expressed in UTC. It can accept an argument: a strftime()
format string.

localtime

The time at which the filter is running, expressed in the local time zone. It can accept an argument: a
strftime() format string.

metadata

Frame metadata. Takes one or two arguments.

The first argument is mandatory and specifies the metadata key.

The second argument is optional and specifies a default value, used when the metadata key is not
found or empty.

n, frame_num

The frame number, starting from 0.

pict_type

A 1 character description of the current picture type.

pts

The timestamp of the current frame. It can take up to three arguments.

The first argument is the format of the timestamp; it defaults to flt for seconds as a decimal number
with microsecond accuracy; hms stands for a formatted [-]HH:MM:SS.mmm timestamp with
millisecond accuracy. gmtime stands for the timestamp of the frame formatted as UTC time;
localtime stands for the timestamp of the frame formatted as local time zone time.

The second argument is an offset added to the timestamp.

If the format is set to hms, a third argument 24HH may be supplied to present the hour part of the
formatted timestamp in 24h format (00-23).

If the format is set to localtime or gmtime, a third argument may be supplied: a strftime() format
string. By default, YYYY-MM-DD HH:MM:SS format will be used.

10.47.3 Examples# TOC

Draw "Test Text" with font FreeSerif, using the default values for the optional parameters.

drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text=’Test Text’"

Draw ’Test Text’ with font FreeSerif of size 24 at position x=100 and y=50 (counting from the
top-left corner of the screen), text is yellow with a red box around it. Both the text and the box have
an opacity of 20%.

drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text=’Test Text’:\
 x=100: y=50: fontsize=24: fontcolor=yellow@0.2: box=1: boxcolor=red@0.2"

Note that the double quotes are not necessary if spaces are not used within the parameter list.

Show the text at the center of the video frame:

drawtext="fontsize=30:fontfile=FreeSerif.ttf:text=’hello world’:x=(w-text_w)/2:y=(h-text_h)/2"

Show the text at a random position, switching to a new position every 30 seconds:

drawtext="fontsize=30:fontfile=FreeSerif.ttf:text=’hello world’:x=if(eq(mod(t\,30)\,0)\,rand(0\,(w-text_w))\,x):y=if(eq(mod(t\,30)\,0)\,rand(0\,(h-text_h))\,y)"

Show a text line sliding from right to left in the last row of the video frame. The file LONG_LINE is
assumed to contain a single line with no newlines.

drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"

Show the content of file CREDITS off the bottom of the frame and scroll up.

drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"

Draw a single green letter "g", at the center of the input video. The glyph baseline is placed at half
screen height.

drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"

Show text for 1 second every 3 seconds:

drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:enable=lt(mod(t\,3)\,1):text=’blink’"

Use fontconfig to set the font. Note that the colons need to be escaped.

drawtext=’fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg’

Print the date of a real-time encoding (see strftime(3)):

drawtext=’fontfile=FreeSans.ttf:text=%{localtime\:%a %b %d %Y}’

Show text fading in and out (appearing/disappearing):
#!/bin/sh
DS=1.0 # display start
DE=10.0 # display end
FID=1.5 # fade in duration
FOD=5 # fade out duration
ffplay -f lavfi "color,drawtext=text=TEST:fontsize=50:fontfile=FreeSerif.ttf:fontcolor_expr=ff0000%{eif\\\\: clip(255*(1*between(t\\, $DS + $FID\\, $DE - $FOD) + ((t - $DS)/$FID)*between(t\\, $DS\\, $DS + $FID) + (-(t - $DE)/$FOD)*between(t\\, $DE - $FOD\\, $DE))\\, 0\\, 255) \\\\: x\\\\: 2 }"

Horizontally align multiple separate texts. Note that max_glyph_a and the fontsize value are
included in the y offset.

drawtext=fontfile=FreeSans.ttf:text=DOG:fontsize=24:x=10:y=20+24-max_glyph_a,
drawtext=fontfile=FreeSans.ttf:text=cow:fontsize=24:x=80:y=20+24-max_glyph_a

For more information about libfreetype, check: http://www.freetype.org/.

For more information about fontconfig, check:
http://freedesktop.org/software/fontconfig/fontconfig-user.html.

For more information about libfribidi, check: http://fribidi.org/.

http://www.freetype.org/
http://freedesktop.org/software/fontconfig/fontconfig-user.html
http://fribidi.org/

10.48 edgedetect# TOC

Detect and draw edges. The filter uses the Canny Edge Detection algorithm.

The filter accepts the following options:

low
high

Set low and high threshold values used by the Canny thresholding algorithm.

The high threshold selects the "strong" edge pixels, which are then connected through 8-connectivity
with the "weak" edge pixels selected by the low threshold.

low and high threshold values must be chosen in the range [0,1], and low should be lesser or equal to
high.

Default value for low is 20/255, and default value for high is 50/255.

mode

Define the drawing mode.

‘wires’

Draw white/gray wires on black background.

‘colormix’

Mix the colors to create a paint/cartoon effect.

‘canny’

Apply Canny edge detector on all selected planes.

Default value is wires.

planes

Select planes for filtering. By default all available planes are filtered.

10.48.1 Examples# TOC

Standard edge detection with custom values for the hysteresis thresholding:

edgedetect=low=0.1:high=0.4

Painting effect without thresholding:

edgedetect=mode=colormix:high=0

10.49 eq# TOC

Set brightness, contrast, saturation and approximate gamma adjustment.

The filter accepts the following options:

contrast

Set the contrast expression. The value must be a float value in range -2.0 to 2.0. The default value
is "1".

brightness

Set the brightness expression. The value must be a float value in range -1.0 to 1.0. The default
value is "0".

saturation

Set the saturation expression. The value must be a float in range 0.0 to 3.0. The default value is
"1".

gamma

Set the gamma expression. The value must be a float in range 0.1 to 10.0. The default value is "1".

gamma_r

Set the gamma expression for red. The value must be a float in range 0.1 to 10.0. The default value
is "1".

gamma_g

Set the gamma expression for green. The value must be a float in range 0.1 to 10.0. The default
value is "1".

gamma_b

Set the gamma expression for blue. The value must be a float in range 0.1 to 10.0. The default
value is "1".

gamma_weight

Set the gamma weight expression. It can be used to reduce the effect of a high gamma value on bright
image areas, e.g. keep them from getting overamplified and just plain white. The value must be a
float in range 0.0 to 1.0. A value of 0.0 turns the gamma correction all the way down while 1.0
leaves it at its full strength. Default is "1".

eval

Set when the expressions for brightness, contrast, saturation and gamma expressions are evaluated.

It accepts the following values:

‘init’

only evaluate expressions once during the filter initialization or when a command is processed

‘frame’

evaluate expressions for each incoming frame

Default value is ‘init’.

The expressions accept the following parameters:

n

frame count of the input frame starting from 0

pos

byte position of the corresponding packet in the input file, NAN if unspecified

r

frame rate of the input video, NAN if the input frame rate is unknown

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

10.49.1 Commands# TOC

The filter supports the following commands:

contrast

Set the contrast expression.

brightness

Set the brightness expression.

saturation

Set the saturation expression.

gamma

Set the gamma expression.

gamma_r

Set the gamma_r expression.

gamma_g

Set gamma_g expression.

gamma_b

Set gamma_b expression.

gamma_weight

Set gamma_weight expression.

The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

10.50 erosion# TOC

Apply erosion effect to the video.

This filter replaces the pixel by the local(3x3) minimum.

It accepts the following options:

threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

coordinates

Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

Flags to local 3x3 coordinates maps like this:

1 2 3 4 5 6 7 8

10.51 extractplanes# TOC

Extract color channel components from input video stream into separate grayscale video streams.

The filter accepts the following option:

planes

Set plane(s) to extract.

Available values for planes are:

‘y’
‘u’
‘v’
‘a’
‘r’
‘g’
‘b’

Choosing planes not available in the input will result in an error. That means you cannot select r, g,
b planes with y, u, v planes at same time.

10.51.1 Examples# TOC

Extract luma, u and v color channel component from input video frame into 3 grayscale outputs:

ffmpeg -i video.avi -filter_complex ’extractplanes=y+u+v[y][u][v]’ -map ’[y]’ y.avi -map ’[u]’ u.avi -map ’[v]’ v.avi

10.52 elbg# TOC

Apply a posterize effect using the ELBG (Enhanced LBG) algorithm.

For each input image, the filter will compute the optimal mapping from the input to the output given the
codebook length, that is the number of distinct output colors.

This filter accepts the following options.

codebook_length, l

Set codebook length. The value must be a positive integer, and represents the number of distinct
output colors. Default value is 256.

nb_steps, n

Set the maximum number of iterations to apply for computing the optimal mapping. The higher the
value the better the result and the higher the computation time. Default value is 1.

seed, s

Set a random seed, must be an integer included between 0 and UINT32_MAX. If not specified, or if
explicitly set to -1, the filter will try to use a good random seed on a best effort basis.

pal8

Set pal8 output pixel format. This option does not work with codebook length greater than 256.

10.53 entropy# TOC

Measure graylevel entropy in histogram of color channels of video frames.

It accepts the following parameters:

mode

Can be either normal or diff. Default is normal.

diff mode measures entropy of histogram delta values, absolute differences between neighbour
histogram values.

10.54 fade# TOC

Apply a fade-in/out effect to the input video.

It accepts the following parameters:

type, t

The effect type can be either "in" for a fade-in, or "out" for a fade-out effect. Default is in.

start_frame, s

Specify the number of the frame to start applying the fade effect at. Default is 0.

nb_frames, n

The number of frames that the fade effect lasts. At the end of the fade-in effect, the output video will
have the same intensity as the input video. At the end of the fade-out transition, the output video will
be filled with the selected color. Default is 25.

alpha

If set to 1, fade only alpha channel, if one exists on the input. Default value is 0.

start_time, st

Specify the timestamp (in seconds) of the frame to start to apply the fade effect. If both start_frame
and start_time are specified, the fade will start at whichever comes last. Default is 0.

duration, d

The number of seconds for which the fade effect has to last. At the end of the fade-in effect the output
video will have the same intensity as the input video, at the end of the fade-out transition the output
video will be filled with the selected color. If both duration and nb_frames are specified, duration
is used. Default is 0 (nb_frames is used by default).

color, c

Specify the color of the fade. Default is "black".

10.54.1 Examples# TOC

Fade in the first 30 frames of video:

fade=in:0:30

The command above is equivalent to:

fade=t=in:s=0:n=30

Fade out the last 45 frames of a 200-frame video:

fade=out:155:45
fade=type=out:start_frame=155:nb_frames=45

Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video:

fade=in:0:25, fade=out:975:25

Make the first 5 frames yellow, then fade in from frame 5-24:

fade=in:5:20:color=yellow

Fade in alpha over first 25 frames of video:

fade=in:0:25:alpha=1

Make the first 5.5 seconds black, then fade in for 0.5 seconds:

fade=t=in:st=5.5:d=0.5

10.55 fftfilt# TOC

Apply arbitrary expressions to samples in frequency domain

dc_Y

Adjust the dc value (gain) of the luma plane of the image. The filter accepts an integer value in range
0 to 1000. The default value is set to 0.

dc_U

Adjust the dc value (gain) of the 1st chroma plane of the image. The filter accepts an integer value in
range 0 to 1000. The default value is set to 0.

dc_V

Adjust the dc value (gain) of the 2nd chroma plane of the image. The filter accepts an integer value in
range 0 to 1000. The default value is set to 0.

weight_Y

Set the frequency domain weight expression for the luma plane.

weight_U

Set the frequency domain weight expression for the 1st chroma plane.

weight_V

Set the frequency domain weight expression for the 2nd chroma plane.

eval

Set when the expressions are evaluated.

It accepts the following values:

‘init’

Only evaluate expressions once during the filter initialization.

‘frame’

Evaluate expressions for each incoming frame.

Default value is ‘init’.

The filter accepts the following variables:

X
Y

The coordinates of the current sample.

W
H

The width and height of the image.

N

The number of input frame, starting from 0.

10.55.1 Examples# TOC

High-pass:

fftfilt=dc_Y=128:weight_Y=’squish(1-(Y+X)/100)’

Low-pass:

fftfilt=dc_Y=0:weight_Y=’squish((Y+X)/100-1)’

Sharpen:

fftfilt=dc_Y=0:weight_Y=’1+squish(1-(Y+X)/100)’

Blur:

fftfilt=dc_Y=0:weight_Y=’exp(-4 * ((Y+X)/(W+H)))’

10.56 fftdnoiz# TOC

Denoise frames using 3D FFT (frequency domain filtering).

The filter accepts the following options:

sigma

Set the noise sigma constant. This sets denoising strength. Default value is 1. Allowed range is from
0 to 30. Using very high sigma with low overlap may give blocking artifacts.

amount

Set amount of denoising. By default all detected noise is reduced. Default value is 1. Allowed range
is from 0 to 1.

block

Set size of block, Default is 4, can be 3, 4, 5 or 6. Actual size of block in pixels is 2 to power of
block, so by default block size in pixels is 2^4 which is 16.

overlap

Set block overlap. Default is 0.5. Allowed range is from 0.2 to 0.8.

prev

Set number of previous frames to use for denoising. By default is set to 0.

next

Set number of next frames to to use for denoising. By default is set to 0.

planes

Set planes which will be filtered, by default are all available filtered except alpha.

10.57 field# TOC

Extract a single field from an interlaced image using stride arithmetic to avoid wasting CPU time. The
output frames are marked as non-interlaced.

The filter accepts the following options:

type

Specify whether to extract the top (if the value is 0 or top) or the bottom field (if the value is 1 or
bottom).

10.58 fieldhint# TOC

Create new frames by copying the top and bottom fields from surrounding frames supplied as numbers by
the hint file.

hint

Set file containing hints: absolute/relative frame numbers.

There must be one line for each frame in a clip. Each line must contain two numbers separated by the
comma, optionally followed by - or +. Numbers supplied on each line of file can not be out of
[N-1,N+1] where N is current frame number for absolute mode or out of [-1, 1] range for
relative mode. First number tells from which frame to pick up top field and second number tells
from which frame to pick up bottom field.

If optionally followed by + output frame will be marked as interlaced, else if followed by - output
frame will be marked as progressive, else it will be marked same as input frame. If line starts with #
or ; that line is skipped.

mode

Can be item absolute or relative. Default is absolute.

Example of first several lines of hint file for relative mode:

0,0 - # first frame
1,0 - # second frame, use third’s frame top field and second’s frame bottom field
1,0 - # third frame, use fourth’s frame top field and third’s frame bottom field
1,0 -
0,0 -
0,0 -
1,0 -
1,0 -
1,0 -
0,0 -
0,0 -
1,0 -
1,0 -
1,0 -
0,0 -

10.59 fieldmatch# TOC

Field matching filter for inverse telecine. It is meant to reconstruct the progressive frames from a telecined
stream. The filter does not drop duplicated frames, so to achieve a complete inverse telecine
fieldmatch needs to be followed by a decimation filter such as decimate in the filtergraph.

The separation of the field matching and the decimation is notably motivated by the possibility of inserting
a de-interlacing filter fallback between the two. If the source has mixed telecined and real interlaced
content, fieldmatch will not be able to match fields for the interlaced parts. But these remaining
combed frames will be marked as interlaced, and thus can be de-interlaced by a later filter such as yadif
before decimation.

In addition to the various configuration options, fieldmatch can take an optional second stream,
activated through the ppsrc option. If enabled, the frames reconstruction will be based on the fields and
frames from this second stream. This allows the first input to be pre-processed in order to help the various
algorithms of the filter, while keeping the output lossless (assuming the fields are matched properly).
Typically, a field-aware denoiser, or brightness/contrast adjustments can help.

Note that this filter uses the same algorithms as TIVTC/TFM (AviSynth project) and VIVTC/VFM
(VapourSynth project). The later is a light clone of TFM from which fieldmatch is based on. While
the semantic and usage are very close, some behaviour and options names can differ.

The decimate filter currently only works for constant frame rate input. If your input has mixed telecined
(30fps) and progressive content with a lower framerate like 24fps use the following filterchain to produce
the necessary cfr stream: dejudder,fps=30000/1001,fieldmatch,decimate.

The filter accepts the following options:

order

Specify the assumed field order of the input stream. Available values are:

‘auto’

Auto detect parity (use FFmpeg’s internal parity value).

‘bff’

Assume bottom field first.

‘tff’

Assume top field first.

Note that it is sometimes recommended not to trust the parity announced by the stream.

Default value is auto.

mode

Set the matching mode or strategy to use. pc mode is the safest in the sense that it won’t risk creating
jerkiness due to duplicate frames when possible, but if there are bad edits or blended fields it will end
up outputting combed frames when a good match might actually exist. On the other hand, pcn_ub
mode is the most risky in terms of creating jerkiness, but will almost always find a good frame if
there is one. The other values are all somewhere in between pc and pcn_ub in terms of risking
jerkiness and creating duplicate frames versus finding good matches in sections with bad edits,
orphaned fields, blended fields, etc.

More details about p/c/n/u/b are available in p/c/n/u/b meaning section.

Available values are:

‘pc’

2-way matching (p/c)

‘pc_n’

2-way matching, and trying 3rd match if still combed (p/c + n)

‘pc_u’

2-way matching, and trying 3rd match (same order) if still combed (p/c + u)

‘pc_n_ub’

2-way matching, trying 3rd match if still combed, and trying 4th/5th matches if still combed (p/c
+ n + u/b)

‘pcn’

3-way matching (p/c/n)

‘pcn_ub’

3-way matching, and trying 4th/5th matches if all 3 of the original matches are detected as
combed (p/c/n + u/b)

The parenthesis at the end indicate the matches that would be used for that mode assuming
order=tff (and field on auto or top).

In terms of speed pc mode is by far the fastest and pcn_ub is the slowest.

Default value is pc_n.

ppsrc

Mark the main input stream as a pre-processed input, and enable the secondary input stream as the
clean source to pick the fields from. See the filter introduction for more details. It is similar to the
clip2 feature from VFM/TFM.

Default value is 0 (disabled).

field

Set the field to match from. It is recommended to set this to the same value as order unless you
experience matching failures with that setting. In certain circumstances changing the field that is used
to match from can have a large impact on matching performance. Available values are:

‘auto’

Automatic (same value as order).

‘bottom’

Match from the bottom field.

‘top’

Match from the top field.

Default value is auto.

mchroma

Set whether or not chroma is included during the match comparisons. In most cases it is
recommended to leave this enabled. You should set this to 0 only if your clip has bad chroma
problems such as heavy rainbowing or other artifacts. Setting this to 0 could also be used to speed
things up at the cost of some accuracy.

Default value is 1.

y0
y1

These define an exclusion band which excludes the lines between y0 and y1 from being included in
the field matching decision. An exclusion band can be used to ignore subtitles, a logo, or other things
that may interfere with the matching. y0 sets the starting scan line and y1 sets the ending line; all
lines in between y0 and y1 (including y0 and y1) will be ignored. Setting y0 and y1 to the same
value will disable the feature. y0 and y1 defaults to 0.

scthresh

Set the scene change detection threshold as a percentage of maximum change on the luma plane.
Good values are in the [8.0, 14.0] range. Scene change detection is only relevant in case
combmatch=sc. The range for scthresh is [0.0, 100.0].

Default value is 12.0.

combmatch

When combatch is not none, fieldmatch will take into account the combed scores of matches
when deciding what match to use as the final match. Available values are:

‘none’

No final matching based on combed scores.

‘sc’

Combed scores are only used when a scene change is detected.

‘full’

Use combed scores all the time.

Default is sc.

combdbg

Force fieldmatch to calculate the combed metrics for certain matches and print them. This setting
is known as micout in TFM/VFM vocabulary. Available values are:

‘none’

No forced calculation.

‘pcn’

Force p/c/n calculations.

‘pcnub’

Force p/c/n/u/b calculations.

Default value is none.

cthresh

This is the area combing threshold used for combed frame detection. This essentially controls how
"strong" or "visible" combing must be to be detected. Larger values mean combing must be more
visible and smaller values mean combing can be less visible or strong and still be detected. Valid
settings are from -1 (every pixel will be detected as combed) to 255 (no pixel will be detected as
combed). This is basically a pixel difference value. A good range is [8, 12].

Default value is 9.

chroma

Sets whether or not chroma is considered in the combed frame decision. Only disable this if your
source has chroma problems (rainbowing, etc.) that are causing problems for the combed frame
detection with chroma enabled. Actually, using chroma=0 is usually more reliable, except for the
case where there is chroma only combing in the source.

Default value is 0.

blockx
blocky

Respectively set the x-axis and y-axis size of the window used during combed frame detection. This
has to do with the size of the area in which combpel pixels are required to be detected as combed
for a frame to be declared combed. See the combpel parameter description for more info. Possible
values are any number that is a power of 2 starting at 4 and going up to 512.

Default value is 16.

combpel

The number of combed pixels inside any of the blocky by blockx size blocks on the frame for the
frame to be detected as combed. While cthresh controls how "visible" the combing must be, this
setting controls "how much" combing there must be in any localized area (a window defined by the
blockx and blocky settings) on the frame. Minimum value is 0 and maximum is blocky x
blockx (at which point no frames will ever be detected as combed). This setting is known as MI in
TFM/VFM vocabulary.

Default value is 80.

10.59.1 p/c/n/u/b meaning# TOC

10.59.1.1 p/c/n# TOC

We assume the following telecined stream:

Top fields: 1 2 2 3 4
Bottom fields: 1 2 3 4 4

The numbers correspond to the progressive frame the fields relate to. Here, the first two frames are
progressive, the 3rd and 4th are combed, and so on.

When fieldmatch is configured to run a matching from bottom (field=bottom) this is how this input
stream get transformed:

Input stream:
 T 1 2 2 3 4
 B 1 2 3 4 4 <-- matching reference

Matches: c c n n c

Output stream:
 T 1 2 3 4 4
 B 1 2 3 4 4

As a result of the field matching, we can see that some frames get duplicated. To perform a complete
inverse telecine, you need to rely on a decimation filter after this operation. See for instance the decimate
filter.

The same operation now matching from top fields (field=top) looks like this:

Input stream:
 T 1 2 2 3 4 <-- matching reference
 B 1 2 3 4 4

Matches: c c p p c

Output stream:
 T 1 2 2 3 4
 B 1 2 2 3 4

In these examples, we can see what p, c and n mean; basically, they refer to the frame and field of the
opposite parity:

p matches the field of the opposite parity in the previous frame
c matches the field of the opposite parity in the current frame
n matches the field of the opposite parity in the next frame

10.59.1.2 u/b# TOC

The u and b matching are a bit special in the sense that they match from the opposite parity flag. In the
following examples, we assume that we are currently matching the 2nd frame (Top:2, bottom:2).
According to the match, a ’x’ is placed above and below each matched fields.

With bottom matching (field=bottom):

Match: c p n b u

 x x x x x
 Top 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
 Bottom 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
 x x x x x

Output frames:
 2 1 2 2 2
 2 2 2 1 3

With top matching (field=top):

Match: c p n b u

 x x x x x
 Top 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
 Bottom 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
 x x x x x

Output frames:
 2 2 2 1 2
 2 1 3 2 2

10.59.2 Examples# TOC

Simple IVTC of a top field first telecined stream:

fieldmatch=order=tff:combmatch=none, decimate

Advanced IVTC, with fallback on yadif for still combed frames:

fieldmatch=order=tff:combmatch=full, yadif=deint=interlaced, decimate

10.60 fieldorder# TOC

Transform the field order of the input video.

It accepts the following parameters:

order

The output field order. Valid values are tff for top field first or bff for bottom field first.

The default value is ‘tff’.

The transformation is done by shifting the picture content up or down by one line, and filling the
remaining line with appropriate picture content. This method is consistent with most broadcast field order
converters.

If the input video is not flagged as being interlaced, or it is already flagged as being of the required output
field order, then this filter does not alter the incoming video.

It is very useful when converting to or from PAL DV material, which is bottom field first.

For example:

ffmpeg -i in.vob -vf "fieldorder=bff" out.dv

10.61 fifo, afifo# TOC

Buffer input images and send them when they are requested.

It is mainly useful when auto-inserted by the libavfilter framework.

It does not take parameters.

10.62 fillborders# TOC

Fill borders of the input video, without changing video stream dimensions. Sometimes video can have
garbage at the four edges and you may not want to crop video input to keep size multiple of some number.

This filter accepts the following options:

left

Number of pixels to fill from left border.

right

Number of pixels to fill from right border.

top

Number of pixels to fill from top border.

bottom

Number of pixels to fill from bottom border.

mode

Set fill mode.

It accepts the following values:

‘smear’

fill pixels using outermost pixels

‘mirror’

fill pixels using mirroring

‘fixed’

fill pixels with constant value

Default is smear.

color

Set color for pixels in fixed mode. Default is black.

10.63 find_rect# TOC

Find a rectangular object

It accepts the following options:

object

Filepath of the object image, needs to be in gray8.

threshold

Detection threshold, default is 0.5.

mipmaps

Number of mipmaps, default is 3.

xmin, ymin, xmax, ymax

Specifies the rectangle in which to search.

10.63.1 Examples# TOC

Generate a representative palette of a given video using ffmpeg:

ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

10.64 cover_rect# TOC

Cover a rectangular object

It accepts the following options:

cover

Filepath of the optional cover image, needs to be in yuv420.

mode

Set covering mode.

It accepts the following values:

‘cover’

cover it by the supplied image

‘blur’

cover it by interpolating the surrounding pixels

Default value is blur.

10.64.1 Examples# TOC

Generate a representative palette of a given video using ffmpeg:

ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

10.65 floodfill# TOC

Flood area with values of same pixel components with another values.

It accepts the following options:

x

Set pixel x coordinate.

y

Set pixel y coordinate.

s0

Set source #0 component value.

s1

Set source #1 component value.

s2

Set source #2 component value.

s3

Set source #3 component value.

d0

Set destination #0 component value.

d1

Set destination #1 component value.

d2

Set destination #2 component value.

d3

Set destination #3 component value.

10.66 format# TOC

Convert the input video to one of the specified pixel formats. Libavfilter will try to pick one that is
suitable as input to the next filter.

It accepts the following parameters:

pix_fmts

A ’|’-separated list of pixel format names, such as "pix_fmts=yuv420p|monow|rgb24".

10.66.1 Examples# TOC

Convert the input video to the yuv420p format

format=pix_fmts=yuv420p

Convert the input video to any of the formats in the list

format=pix_fmts=yuv420p|yuv444p|yuv410p

10.67 fps# TOC

Convert the video to specified constant frame rate by duplicating or dropping frames as necessary.

It accepts the following parameters:

fps

The desired output frame rate. The default is 25.

start_time

Assume the first PTS should be the given value, in seconds. This allows for padding/trimming at the
start of stream. By default, no assumption is made about the first frame’s expected PTS, so no
padding or trimming is done. For example, this could be set to 0 to pad the beginning with duplicates
of the first frame if a video stream starts after the audio stream or to trim any frames with a negative
PTS.

round

Timestamp (PTS) rounding method.

Possible values are:

zero

round towards 0

inf

round away from 0

down

round towards -infinity

up

round towards +infinity

near

round to nearest

The default is near.

eof_action

Action performed when reading the last frame.

Possible values are:

round

Use same timestamp rounding method as used for other frames.

pass

Pass through last frame if input duration has not been reached yet.

The default is round.

Alternatively, the options can be specified as a flat string: fps[:start_time[:round]].

See also the setpts filter.

10.67.1 Examples# TOC

A typical usage in order to set the fps to 25:

fps=fps=25

Sets the fps to 24, using abbreviation and rounding method to round to nearest:

fps=fps=film:round=near

10.68 framepack# TOC

Pack two different video streams into a stereoscopic video, setting proper metadata on supported codecs.
The two views should have the same size and framerate and processing will stop when the shorter video
ends. Please note that you may conveniently adjust view properties with the scale and fps filters.

It accepts the following parameters:

format

The desired packing format. Supported values are:

sbs

The views are next to each other (default).

tab

The views are on top of each other.

lines

The views are packed by line.

columns

The views are packed by column.

frameseq

The views are temporally interleaved.

Some examples:

Convert left and right views into a frame-sequential video
ffmpeg -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT

Convert views into a side-by-side video with the same output resolution as the input
ffmpeg -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT

10.69 framerate# TOC

Change the frame rate by interpolating new video output frames from the source frames.

This filter is not designed to function correctly with interlaced media. If you wish to change the frame rate
of interlaced media then you are required to deinterlace before this filter and re-interlace after this filter.

A description of the accepted options follows.

fps

Specify the output frames per second. This option can also be specified as a value alone. The default
is 50.

interp_start

Specify the start of a range where the output frame will be created as a linear interpolation of two
frames. The range is [0-255], the default is 15.

interp_end

Specify the end of a range where the output frame will be created as a linear interpolation of two
frames. The range is [0-255], the default is 240.

scene

Specify the level at which a scene change is detected as a value between 0 and 100 to indicate a new
scene; a low value reflects a low probability for the current frame to introduce a new scene, while a
higher value means the current frame is more likely to be one. The default is 8.2.

flags

Specify flags influencing the filter process.

Available value for flags is:

scene_change_detect, scd

Enable scene change detection using the value of the option scene. This flag is enabled by
default.

10.70 framestep# TOC

Select one frame every N-th frame.

This filter accepts the following option:

step

Select frame after every step frames. Allowed values are positive integers higher than 0. Default
value is 1.

10.71 frei0r# TOC

Apply a frei0r effect to the input video.

To enable the compilation of this filter, you need to install the frei0r header and configure FFmpeg with
--enable-frei0r.

It accepts the following parameters:

filter_name

The name of the frei0r effect to load. If the environment variable FREI0R_PATH is defined, the
frei0r effect is searched for in each of the directories specified by the colon-separated list in
FREI0R_PATH. Otherwise, the standard frei0r paths are searched, in this order:
HOME/.frei0r-1/lib/, /usr/local/lib/frei0r-1/, /usr/lib/frei0r-1/.

filter_params

A ’|’-separated list of parameters to pass to the frei0r effect.

A frei0r effect parameter can be a boolean (its value is either "y" or "n"), a double, a color (specified as
R/G/B, where R, G, and B are floating point numbers between 0.0 and 1.0, inclusive) or a color description
as specified in the (ffmpeg-utils)"Color" section in the ffmpeg-utils manual, a position (specified as X/Y,
where X and Y are floating point numbers) and/or a string.

The number and types of parameters depend on the loaded effect. If an effect parameter is not specified,
the default value is set.

10.71.1 Examples# TOC

Apply the distort0r effect, setting the first two double parameters:

frei0r=filter_name=distort0r:filter_params=0.5|0.01

Apply the colordistance effect, taking a color as the first parameter:

frei0r=colordistance:0.2/0.3/0.4
frei0r=colordistance:violet
frei0r=colordistance:0x112233

Apply the perspective effect, specifying the top left and top right image positions:

frei0r=perspective:0.2/0.2|0.8/0.2

For more information, see http://frei0r.dyne.org

10.72 fspp# TOC

Apply fast and simple postprocessing. It is a faster version of spp.

It splits (I)DCT into horizontal/vertical passes. Unlike the simple post- processing filter, one of them is
performed once per block, not per pixel. This allows for much higher speed.

The filter accepts the following options:

quality

Set quality. This option defines the number of levels for averaging. It accepts an integer in the range
4-5. Default value is 4.

http://frei0r.dyne.org/

qp

Force a constant quantization parameter. It accepts an integer in range 0-63. If not set, the filter will
use the QP from the video stream (if available).

strength

Set filter strength. It accepts an integer in range -15 to 32. Lower values mean more details but also
more artifacts, while higher values make the image smoother but also blurrier. Default value is 0 â
PSNR optimal.

use_bframe_qp

Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the
B-Frames have often larger QP. Default is 0 (not enabled).

10.73 gblur# TOC

Apply Gaussian blur filter.

The filter accepts the following options:

sigma

Set horizontal sigma, standard deviation of Gaussian blur. Default is 0.5.

steps

Set number of steps for Gaussian approximation. Defauls is 1.

planes

Set which planes to filter. By default all planes are filtered.

sigmaV

Set vertical sigma, if negative it will be same as sigma. Default is -1.

10.74 geq# TOC

The filter accepts the following options:

lum_expr, lum

Set the luminance expression.

cb_expr, cb

Set the chrominance blue expression.

cr_expr, cr

Set the chrominance red expression.

alpha_expr, a

Set the alpha expression.

red_expr, r

Set the red expression.

green_expr, g

Set the green expression.

blue_expr, b

Set the blue expression.

The colorspace is selected according to the specified options. If one of the lum_expr, cb_expr, or
cr_expr options is specified, the filter will automatically select a YCbCr colorspace. If one of the
red_expr, green_expr, or blue_expr options is specified, it will select an RGB colorspace.

If one of the chrominance expression is not defined, it falls back on the other one. If no alpha expression is
specified it will evaluate to opaque value. If none of chrominance expressions are specified, they will
evaluate to the luminance expression.

The expressions can use the following variables and functions:

N

The sequential number of the filtered frame, starting from 0.

X
Y

The coordinates of the current sample.

W
H

The width and height of the image.

SW
SH

Width and height scale depending on the currently filtered plane. It is the ratio between the
corresponding luma plane number of pixels and the current plane ones. E.g. for YUV4:2:0 the values are
1,1 for the luma plane, and 0.5,0.5 for chroma planes.

T

Time of the current frame, expressed in seconds.

p(x, y)

Return the value of the pixel at location (x,y) of the current plane.

lum(x, y)

Return the value of the pixel at location (x,y) of the luminance plane.

cb(x, y)

Return the value of the pixel at location (x,y) of the blue-difference chroma plane. Return 0 if there is
no such plane.

cr(x, y)

Return the value of the pixel at location (x,y) of the red-difference chroma plane. Return 0 if there is
no such plane.

r(x, y)
g(x, y)
b(x, y)

Return the value of the pixel at location (x,y) of the red/green/blue component. Return 0 if there is no
such component.

alpha(x, y)

Return the value of the pixel at location (x,y) of the alpha plane. Return 0 if there is no such plane.

For functions, if x and y are outside the area, the value will be automatically clipped to the closer edge.

10.74.1 Examples# TOC

Flip the image horizontally:

geq=p(W-X\,Y)

Generate a bidimensional sine wave, with angle PI/3 and a wavelength of 100 pixels:

geq=128 + 100*sin(2*(PI/100)*(cos(PI/3)*(X-50*T) + sin(PI/3)*Y)):128:128

Generate a fancy enigmatic moving light:

nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128

Generate a quick emboss effect:

format=gray,geq=lum_expr=’(p(X,Y)+(256-p(X-4,Y-4)))/2’

Modify RGB components depending on pixel position:

geq=r=’X/W*r(X,Y)’:g=’(1-X/W)*g(X,Y)’:b=’(H-Y)/H*b(X,Y)’

Create a radial gradient that is the same size as the input (also see the vignette filter):

geq=lum=255*gauss((X/W-0.5)*3)*gauss((Y/H-0.5)*3)/gauss(0)/gauss(0),format=gray

10.75 gradfun# TOC

Fix the banding artifacts that are sometimes introduced into nearly flat regions by truncation to 8-bit color
depth. Interpolate the gradients that should go where the bands are, and dither them.

It is designed for playback only. Do not use it prior to lossy compression, because compression tends to
lose the dither and bring back the bands.

It accepts the following parameters:

strength

The maximum amount by which the filter will change any one pixel. This is also the threshold for
detecting nearly flat regions. Acceptable values range from .51 to 64; the default value is 1.2.
Out-of-range values will be clipped to the valid range.

radius

The neighborhood to fit the gradient to. A larger radius makes for smoother gradients, but also
prevents the filter from modifying the pixels near detailed regions. Acceptable values are 8-32; the
default value is 16. Out-of-range values will be clipped to the valid range.

Alternatively, the options can be specified as a flat string: strength[:radius]

10.75.1 Examples# TOC

Apply the filter with a 3.5 strength and radius of 8:

gradfun=3.5:8

Specify radius, omitting the strength (which will fall-back to the default value):

gradfun=radius=8

10.76 greyedge# TOC

A color constancy variation filter which estimates scene illumination via grey edge algorithm and corrects
the scene colors accordingly.

See: https://staff.science.uva.nl/th.gevers/pub/GeversTIP07.pdf

The filter accepts the following options:

difford

The order of differentiation to be applied on the scene. Must be chosen in the range [0,2] and default
value is 1.

minknorm

The Minkowski parameter to be used for calculating the Minkowski distance. Must be chosen in the
range [0,20] and default value is 1. Set to 0 for getting max value instead of calculating Minkowski
distance.

sigma

The standard deviation of Gaussian blur to be applied on the scene. Must be chosen in the range
[0,1024.0] and default value = 1. floor(sigma * break_off_sigma(3)) can’t be euqal to 0 if difford is
greater than 0.

10.76.1 Examples# TOC

Grey Edge:

greyedge=difford=1:minknorm=5:sigma=2

Max Edge:

greyedge=difford=1:minknorm=0:sigma=2

10.77 haldclut# TOC

Apply a Hald CLUT to a video stream.

First input is the video stream to process, and second one is the Hald CLUT. The Hald CLUT input can be
a simple picture or a complete video stream.

The filter accepts the following options:

shortest

https://staff.science.uva.nl/th.gevers/pub/GeversTIP07.pdf

Force termination when the shortest input terminates. Default is 0.

repeatlast

Continue applying the last CLUT after the end of the stream. A value of 0 disable the filter after the
last frame of the CLUT is reached. Default is 1.

haldclut also has the same interpolation options as lut3d (both filters share the same internals).

More information about the Hald CLUT can be found on Eskil Steenberg’s website (Hald CLUT author)
at http://www.quelsolaar.com/technology/clut.html.

10.77.1 Workflow examples# TOC

10.77.1.1 Hald CLUT video stream# TOC

Generate an identity Hald CLUT stream altered with various effects:

ffmpeg -f lavfi -i haldclutsrc=8 -vf "hue=H=2*PI*t:s=sin(2*PI*t)+1, curves=cross_process" -t 10 -c:v ffv1 clut.nut

Note: make sure you use a lossless codec.

Then use it with haldclut to apply it on some random stream:

ffmpeg -f lavfi -i mandelbrot -i clut.nut -filter_complex ’[0][1] haldclut’ -t 20 mandelclut.mkv

The Hald CLUT will be applied to the 10 first seconds (duration of clut.nut), then the latest picture of
that CLUT stream will be applied to the remaining frames of the mandelbrot stream.

10.77.1.2 Hald CLUT with preview# TOC

A Hald CLUT is supposed to be a squared image of Level*Level*Level by
Level*Level*Level pixels. For a given Hald CLUT, FFmpeg will select the biggest possible square
starting at the top left of the picture. The remaining padding pixels (bottom or right) will be ignored. This
area can be used to add a preview of the Hald CLUT.

Typically, the following generated Hald CLUT will be supported by the haldclut filter:

ffmpeg -f lavfi -i haldclutsrc=8 -vf "
 pad=iw+320 [padded_clut];
 smptebars=s=320x256, split [a][b];
 [padded_clut][a] overlay=W-320:h, curves=color_negative [main];
 [main][b] overlay=W-320" -frames:v 1 clut.png

It contains the original and a preview of the effect of the CLUT: SMPTE color bars are displayed on the
right-top, and below the same color bars processed by the color changes.

Then, the effect of this Hald CLUT can be visualized with:

http://www.quelsolaar.com/technology/clut.html

ffplay input.mkv -vf "movie=clut.png, [in] haldclut"

10.78 hflip# TOC

Flip the input video horizontally.

For example, to horizontally flip the input video with ffmpeg:

ffmpeg -i in.avi -vf "hflip" out.avi

10.79 histeq# TOC

This filter applies a global color histogram equalization on a per-frame basis.

It can be used to correct video that has a compressed range of pixel intensities. The filter redistributes the
pixel intensities to equalize their distribution across the intensity range. It may be viewed as an
"automatically adjusting contrast filter". This filter is useful only for correcting degraded or poorly
captured source video.

The filter accepts the following options:

strength

Determine the amount of equalization to be applied. As the strength is reduced, the distribution of
pixel intensities more-and-more approaches that of the input frame. The value must be a float number
in the range [0,1] and defaults to 0.200.

intensity

Set the maximum intensity that can generated and scale the output values appropriately. The strength
should be set as desired and then the intensity can be limited if needed to avoid washing-out. The
value must be a float number in the range [0,1] and defaults to 0.210.

antibanding

Set the antibanding level. If enabled the filter will randomly vary the luminance of output pixels by a
small amount to avoid banding of the histogram. Possible values are none, weak or strong. It
defaults to none.

10.80 histogram# TOC

Compute and draw a color distribution histogram for the input video.

The computed histogram is a representation of the color component distribution in an image.

Standard histogram displays the color components distribution in an image. Displays color graph for each
color component. Shows distribution of the Y, U, V, A or R, G, B components, depending on input
format, in the current frame. Below each graph a color component scale meter is shown.

The filter accepts the following options:

level_height

Set height of level. Default value is 200. Allowed range is [50, 2048].

scale_height

Set height of color scale. Default value is 12. Allowed range is [0, 40].

display_mode

Set display mode. It accepts the following values:

‘stack’

Per color component graphs are placed below each other.

‘parade’

Per color component graphs are placed side by side.

‘overlay’

Presents information identical to that in the parade, except that the graphs representing color
components are superimposed directly over one another.

Default is stack.

levels_mode

Set mode. Can be either linear, or logarithmic. Default is linear.

components

Set what color components to display. Default is 7.

fgopacity

Set foreground opacity. Default is 0.7.

bgopacity

Set background opacity. Default is 0.5.

10.80.1 Examples# TOC

Calculate and draw histogram:

ffplay -i input -vf histogram

10.81 hqdn3d# TOC

This is a high precision/quality 3d denoise filter. It aims to reduce image noise, producing smooth images
and making still images really still. It should enhance compressibility.

It accepts the following optional parameters:

luma_spatial

A non-negative floating point number which specifies spatial luma strength. It defaults to 4.0.

chroma_spatial

A non-negative floating point number which specifies spatial chroma strength. It defaults to
3.0*luma_spatial/4.0.

luma_tmp

A floating point number which specifies luma temporal strength. It defaults to 6.0*luma_spatial/4.0.

chroma_tmp

A floating point number which specifies chroma temporal strength. It defaults to
luma_tmp*chroma_spatial/luma_spatial.

10.82 hwdownload# TOC

Download hardware frames to system memory.

The input must be in hardware frames, and the output a non-hardware format. Not all formats will be
supported on the output - it may be necessary to insert an additional format filter immediately following
in the graph to get the output in a supported format.

10.83 hwmap# TOC

Map hardware frames to system memory or to another device.

This filter has several different modes of operation; which one is used depends on the input and output
formats:

Hardware frame input, normal frame output

Map the input frames to system memory and pass them to the output. If the original hardware frame
is later required (for example, after overlaying something else on part of it), the hwmap filter can be
used again in the next mode to retrieve it.

Normal frame input, hardware frame output

If the input is actually a software-mapped hardware frame, then unmap it - that is, return the original
hardware frame.

Otherwise, a device must be provided. Create new hardware surfaces on that device for the output,
then map them back to the software format at the input and give those frames to the preceding filter.
This will then act like the hwupload filter, but may be able to avoid an additional copy when the
input is already in a compatible format.

Hardware frame input and output

A device must be supplied for the output, either directly or with the derive_device option. The
input and output devices must be of different types and compatible - the exact meaning of this is
system-dependent, but typically it means that they must refer to the same underlying hardware
context (for example, refer to the same graphics card).

If the input frames were originally created on the output device, then unmap to retrieve the original
frames.

Otherwise, map the frames to the output device - create new hardware frames on the output
corresponding to the frames on the input.

The following additional parameters are accepted:

mode

Set the frame mapping mode. Some combination of:

read

The mapped frame should be readable.

write

The mapped frame should be writeable.

overwrite

The mapping will always overwrite the entire frame.

This may improve performance in some cases, as the original contents of the frame need not be
loaded.

direct

The mapping must not involve any copying.

Indirect mappings to copies of frames are created in some cases where either direct mapping is
not possible or it would have unexpected properties. Setting this flag ensures that the mapping is
direct and will fail if that is not possible.

Defaults to read+write if not specified.

derive_device type

Rather than using the device supplied at initialisation, instead derive a new device of type type from
the device the input frames exist on.

reverse

In a hardware to hardware mapping, map in reverse - create frames in the sink and map them back to
the source. This may be necessary in some cases where a mapping in one direction is required but
only the opposite direction is supported by the devices being used.

This option is dangerous - it may break the preceding filter in undefined ways if there are any
additional constraints on that filter’s output. Do not use it without fully understanding the
implications of its use.

10.84 hwupload# TOC

Upload system memory frames to hardware surfaces.

The device to upload to must be supplied when the filter is initialised. If using ffmpeg, select the
appropriate device with the -filter_hw_device option.

10.85 hwupload_cuda# TOC

Upload system memory frames to a CUDA device.

It accepts the following optional parameters:

device

The number of the CUDA device to use

10.86 hqx# TOC

Apply a high-quality magnification filter designed for pixel art. This filter was originally created by
Maxim Stepin.

It accepts the following option:

n

Set the scaling dimension: 2 for hq2x, 3 for hq3x and 4 for hq4x. Default is 3.

10.87 hstack# TOC

Stack input videos horizontally.

All streams must be of same pixel format and of same height.

Note that this filter is faster than using overlay and pad filter to create same output.

The filter accept the following option:

inputs

Set number of input streams. Default is 2.

shortest

If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

10.88 hue# TOC

Modify the hue and/or the saturation of the input.

It accepts the following parameters:

h

Specify the hue angle as a number of degrees. It accepts an expression, and defaults to "0".

s

Specify the saturation in the [-10,10] range. It accepts an expression and defaults to "1".

H

Specify the hue angle as a number of radians. It accepts an expression, and defaults to "0".

b

Specify the brightness in the [-10,10] range. It accepts an expression and defaults to "0".

h and H are mutually exclusive, and can’t be specified at the same time.

The b, h, H and s option values are expressions containing the following constants:

n

frame count of the input frame starting from 0

pts

presentation timestamp of the input frame expressed in time base units

r

frame rate of the input video, NAN if the input frame rate is unknown

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

tb

time base of the input video

10.88.1 Examples# TOC

Set the hue to 90 degrees and the saturation to 1.0:

hue=h=90:s=1

Same command but expressing the hue in radians:

hue=H=PI/2:s=1

Rotate hue and make the saturation swing between 0 and 2 over a period of 1 second:

hue="H=2*PI*t: s=sin(2*PI*t)+1"

Apply a 3 seconds saturation fade-in effect starting at 0:

hue="s=min(t/3\,1)"

The general fade-in expression can be written as:

hue="s=min(0\, max((t-START)/DURATION\, 1))"

Apply a 3 seconds saturation fade-out effect starting at 5 seconds:

hue="s=max(0\, min(1\, (8-t)/3))"

The general fade-out expression can be written as:

hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"

10.88.2 Commands# TOC

This filter supports the following commands:

b
s
h
H

Modify the hue and/or the saturation and/or brightness of the input video. The command accepts the
same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

10.89 hysteresis# TOC

Grow first stream into second stream by connecting components. This makes it possible to build more
robust edge masks.

This filter accepts the following options:

planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream.
By default value 0xf, all planes will be processed.

threshold

Set threshold which is used in filtering. If pixel component value is higher than this value filter
algorithm for connecting components is activated. By default value is 0.

10.90 idet# TOC

Detect video interlacing type.

This filter tries to detect if the input frames are interlaced, progressive, top or bottom field first. It will also
try to detect fields that are repeated between adjacent frames (a sign of telecine).

Single frame detection considers only immediately adjacent frames when classifying each frame. Multiple
frame detection incorporates the classification history of previous frames.

The filter will log these metadata values:

single.current_frame

Detected type of current frame using single-frame detection. One of: “tff” (top field first), “bff”
(bottom field first), “progressive”, or “undetermined”

single.tff

Cumulative number of frames detected as top field first using single-frame detection.

multiple.tff

Cumulative number of frames detected as top field first using multiple-frame detection.

single.bff

Cumulative number of frames detected as bottom field first using single-frame detection.

multiple.current_frame

Detected type of current frame using multiple-frame detection. One of: “tff” (top field first), “bff”
(bottom field first), “progressive”, or “undetermined”

multiple.bff

Cumulative number of frames detected as bottom field first using multiple-frame detection.

single.progressive

Cumulative number of frames detected as progressive using single-frame detection.

multiple.progressive

Cumulative number of frames detected as progressive using multiple-frame detection.

single.undetermined

Cumulative number of frames that could not be classified using single-frame detection.

multiple.undetermined

Cumulative number of frames that could not be classified using multiple-frame detection.

repeated.current_frame

Which field in the current frame is repeated from the last. One of “neither”, “top”, or “bottom”.

repeated.neither

Cumulative number of frames with no repeated field.

repeated.top

Cumulative number of frames with the top field repeated from the previous frame’s top field.

repeated.bottom

Cumulative number of frames with the bottom field repeated from the previous frame’s bottom field.

The filter accepts the following options:

intl_thres

Set interlacing threshold.

prog_thres

Set progressive threshold.

rep_thres

Threshold for repeated field detection.

half_life

Number of frames after which a given frame’s contribution to the statistics is halved (i.e., it
contributes only 0.5 to its classification). The default of 0 means that all frames seen are given full
weight of 1.0 forever.

analyze_interlaced_flag

When this is not 0 then idet will use the specified number of frames to determine if the interlaced flag
is accurate, it will not count undetermined frames. If the flag is found to be accurate it will be used
without any further computations, if it is found to be inaccurate it will be cleared without any further
computations. This allows inserting the idet filter as a low computational method to clean up the
interlaced flag

10.91 il# TOC

Deinterleave or interleave fields.

This filter allows one to process interlaced images fields without deinterlacing them. Deinterleaving splits
the input frame into 2 fields (so called half pictures). Odd lines are moved to the top half of the output
image, even lines to the bottom half. You can process (filter) them independently and then re-interleave
them.

The filter accepts the following options:

luma_mode, l
chroma_mode, c
alpha_mode, a

Available values for luma_mode, chroma_mode and alpha_mode are:

‘none’

Do nothing.

‘deinterleave, d’

Deinterleave fields, placing one above the other.

‘interleave, i’

Interleave fields. Reverse the effect of deinterleaving.

Default value is none.

luma_swap, ls
chroma_swap, cs
alpha_swap, as

Swap luma/chroma/alpha fields. Exchange even & odd lines. Default value is 0.

10.92 inflate# TOC

Apply inflate effect to the video.

This filter replaces the pixel by the local(3x3) average by taking into account only values higher than the
pixel.

It accepts the following options:

threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

10.93 interlace# TOC

Simple interlacing filter from progressive contents. This interleaves upper (or lower) lines from odd
frames with lower (or upper) lines from even frames, halving the frame rate and preserving image height.

 Original Original New Frame
 Frame ’j’ Frame ’j+1’ (tff)
 ========== =========== ==================
 Line 0 --------------------> Frame ’j’ Line 0
 Line 1 Line 1 ----> Frame ’j+1’ Line 1
 Line 2 ---------------------> Frame ’j’ Line 2
 Line 3 Line 3 ----> Frame ’j+1’ Line 3

New Frame + 1 will be generated by Frame ’j+2’ and Frame ’j+3’ and so on

It accepts the following optional parameters:

scan

This determines whether the interlaced frame is taken from the even (tff - default) or odd (bff) lines
of the progressive frame.

lowpass

Vertical lowpass filter to avoid twitter interlacing and reduce moire patterns.

‘0, off’

Disable vertical lowpass filter

‘1, linear’

Enable linear filter (default)

‘2, complex’

Enable complex filter. This will slightly less reduce twitter and moire but better retain detail and
subjective sharpness impression.

10.94 kerndeint# TOC

Deinterlace input video by applying Donald Graft’s adaptive kernel deinterling. Work on interlaced parts
of a video to produce progressive frames.

The description of the accepted parameters follows.

thresh

Set the threshold which affects the filter’s tolerance when determining if a pixel line must be
processed. It must be an integer in the range [0,255] and defaults to 10. A value of 0 will result in applying
the process on every pixels.

map

Paint pixels exceeding the threshold value to white if set to 1. Default is 0.

order

Set the fields order. Swap fields if set to 1, leave fields alone if 0. Default is 0.

sharp

Enable additional sharpening if set to 1. Default is 0.

twoway

Enable twoway sharpening if set to 1. Default is 0.

10.94.1 Examples# TOC

Apply default values:

kerndeint=thresh=10:map=0:order=0:sharp=0:twoway=0

Enable additional sharpening:

kerndeint=sharp=1

Paint processed pixels in white:

kerndeint=map=1

10.95 lenscorrection# TOC

Correct radial lens distortion

This filter can be used to correct for radial distortion as can result from the use of wide angle lenses, and
thereby re-rectify the image. To find the right parameters one can use tools available for example as part
of opencv or simply trial-and-error. To use opencv use the calibration sample (under samples/cpp) from
the opencv sources and extract the k1 and k2 coefficients from the resulting matrix.

Note that effectively the same filter is available in the open-source tools Krita and Digikam from the KDE
project.

In contrast to the vignette filter, which can also be used to compensate lens errors, this filter corrects the
distortion of the image, whereas vignette corrects the brightness distribution, so you may want to use both
filters together in certain cases, though you will have to take care of ordering, i.e. whether vignetting
should be applied before or after lens correction.

10.95.1 Options# TOC

The filter accepts the following options:

cx

Relative x-coordinate of the focal point of the image, and thereby the center of the distortion. This
value has a range [0,1] and is expressed as fractions of the image width. Default is 0.5.

cy

Relative y-coordinate of the focal point of the image, and thereby the center of the distortion. This
value has a range [0,1] and is expressed as fractions of the image height. Default is 0.5.

k1

Coefficient of the quadratic correction term. This value has a range [-1,1]. 0 means no correction.
Default is 0.

k2

Coefficient of the double quadratic correction term. This value has a range [-1,1]. 0 means no
correction. Default is 0.

The formula that generates the correction is:

r_src = r_tgt * (1 + k1 * (r_tgt / r_0)^2 + k2 * (r_tgt / r_0)^4)

where r_0 is halve of the image diagonal and r_src and r_tgt are the distances from the focal point in the
source and target images, respectively.

10.96 lensfun# TOC

Apply lens correction via the lensfun library (http://lensfun.sourceforge.net/).

The lensfun filter requires the camera make, camera model, and lens model to apply the lens correction.
The filter will load the lensfun database and query it to find the corresponding camera and lens entries in
the database. As long as these entries can be found with the given options, the filter can perform
corrections on frames. Note that incomplete strings will result in the filter choosing the best match with
the given options, and the filter will output the chosen camera and lens models (logged with level "info").
You must provide the make, camera model, and lens model as they are required.

The filter accepts the following options:

make

The make of the camera (for example, "Canon"). This option is required.

http://lensfun.sourceforge.net/

model

The model of the camera (for example, "Canon EOS 100D"). This option is required.

lens_model

The model of the lens (for example, "Canon EF-S 18-55mm f/3.5-5.6 IS STM"). This option is
required.

mode

The type of correction to apply. The following values are valid options:

‘vignetting’

Enables fixing lens vignetting.

‘geometry’

Enables fixing lens geometry. This is the default.

‘subpixel’

Enables fixing chromatic aberrations.

‘vig_geo’

Enables fixing lens vignetting and lens geometry.

‘vig_subpixel’

Enables fixing lens vignetting and chromatic aberrations.

‘distortion’

Enables fixing both lens geometry and chromatic aberrations.

‘all’

Enables all possible corrections.

focal_length

The focal length of the image/video (zoom; expected constant for video). For example, a 18–55mm
lens has focal length range of [18–55], so a value in that range should be chosen when using that lens.
Default 18.

aperture

The aperture of the image/video (expected constant for video). Note that aperture is only used for
vignetting correction. Default 3.5.

focus_distance

The focus distance of the image/video (expected constant for video). Note that focus distance is only
used for vignetting and only slightly affects the vignetting correction process. If unknown, leave it at
the default value (which is 1000).

target_geometry

The target geometry of the output image/video. The following values are valid options:

‘rectilinear (default)’
‘fisheye’
‘panoramic’
‘equirectangular’
‘fisheye_orthographic’
‘fisheye_stereographic’
‘fisheye_equisolid’
‘fisheye_thoby’

reverse

Apply the reverse of image correction (instead of correcting distortion, apply it).

interpolation

The type of interpolation used when correcting distortion. The following values are valid options:

‘nearest’
‘linear (default)’
‘lanczos’

10.96.1 Examples# TOC

Apply lens correction with make "Canon", camera model "Canon EOS 100D", and lens model
"Canon EF-S 18-55mm f/3.5-5.6 IS STM" with focal length of "18" and aperture of "8.0".

ffmpeg -i input.mov -vf lensfun=make=Canon:model="Canon EOS 100D":lens_model="Canon EF-S 18-55mm f/3.5-5.6 IS STM":focal_length=18:aperture=8 -c:v h264 -b:v 8000k output.mov

Apply the same as before, but only for the first 5 seconds of video.

ffmpeg -i input.mov -vf lensfun=make=Canon:model="Canon EOS 100D":lens_model="Canon EF-S 18-55mm f/3.5-5.6 IS STM":focal_length=18:aperture=8:enable=’lte(t\,5)’ -c:v h264 -b:v 8000k output.mov

10.97 libvmaf# TOC

Obtain the VMAF (Video Multi-Method Assessment Fusion) score between two input videos.

The obtained VMAF score is printed through the logging system.

It requires Netflix’s vmaf library (libvmaf) as a pre-requisite. After installing the library it can be enabled
using: ./configure --enable-libvmaf --enable-version3. If no model path is specified
it uses the default model: vmaf_v0.6.1.pkl.

The filter has following options:

model_path

Set the model path which is to be used for SVM. Default value: "vmaf_v0.6.1.pkl"

log_path

Set the file path to be used to store logs.

log_fmt

Set the format of the log file (xml or json).

enable_transform

Enables transform for computing vmaf.

phone_model

Invokes the phone model which will generate VMAF scores higher than in the regular model, which
is more suitable for laptop, TV, etc. viewing conditions.

psnr

Enables computing psnr along with vmaf.

ssim

Enables computing ssim along with vmaf.

ms_ssim

Enables computing ms_ssim along with vmaf.

pool

Set the pool method (mean, min or harmonic mean) to be used for computing vmaf.

n_threads

Set number of threads to be used when computing vmaf.

n_subsample

Set interval for frame subsampling used when computing vmaf.

enable_conf_interval

Enables confidence interval.

This filter also supports the framesync options.

On the below examples the input file main.mpg being processed is compared with the reference file
ref.mpg.

ffmpeg -i main.mpg -i ref.mpg -lavfi libvmaf -f null -

Example with options:

ffmpeg -i main.mpg -i ref.mpg -lavfi libvmaf="psnr=1:enable-transform=1" -f null -

10.98 limiter# TOC

Limits the pixel components values to the specified range [min, max].

The filter accepts the following options:

min

Lower bound. Defaults to the lowest allowed value for the input.

max

Upper bound. Defaults to the highest allowed value for the input.

planes

Specify which planes will be processed. Defaults to all available.

10.99 loop# TOC

Loop video frames.

The filter accepts the following options:

loop

Set the number of loops. Setting this value to -1 will result in infinite loops. Default is 0.

size

Set maximal size in number of frames. Default is 0.

start

Set first frame of loop. Default is 0.

10.100 lut3d# TOC

Apply a 3D LUT to an input video.

The filter accepts the following options:

file

Set the 3D LUT file name.

Currently supported formats:

‘3dl’

AfterEffects

‘cube’

Iridas

‘dat’

DaVinci

‘m3d’

Pandora

interp

Select interpolation mode.

Available values are:

‘nearest’

Use values from the nearest defined point.

‘trilinear’

Interpolate values using the 8 points defining a cube.

‘tetrahedral’

Interpolate values using a tetrahedron.

This filter also supports the framesync options.

10.101 lumakey# TOC

Turn certain luma values into transparency.

The filter accepts the following options:

threshold

Set the luma which will be used as base for transparency. Default value is 0.

tolerance

Set the range of luma values to be keyed out. Default value is 0.

softness

Set the range of softness. Default value is 0. Use this to control gradual transition from zero to full
transparency.

10.102 lut, lutrgb, lutyuv# TOC

Compute a look-up table for binding each pixel component input value to an output value, and apply it to
the input video.

lutyuv applies a lookup table to a YUV input video, lutrgb to an RGB input video.

These filters accept the following parameters:

c0

set first pixel component expression

c1

set second pixel component expression

c2

set third pixel component expression

c3

set fourth pixel component expression, corresponds to the alpha component

r

set red component expression

g

set green component expression

b

set blue component expression

a

alpha component expression

y

set Y/luminance component expression

u

set U/Cb component expression

v

set V/Cr component expression

Each of them specifies the expression to use for computing the lookup table for the corresponding pixel
component values.

The exact component associated to each of the c* options depends on the format in input.

The lut filter requires either YUV or RGB pixel formats in input, lutrgb requires RGB pixel formats in
input, and lutyuv requires YUV.

The expressions can contain the following constants and functions:

w
h

The input width and height.

val

The input value for the pixel component.

clipval

The input value, clipped to the minval-maxval range.

maxval

The maximum value for the pixel component.

minval

The minimum value for the pixel component.

negval

The negated value for the pixel component value, clipped to the minval-maxval range; it corresponds
to the expression "maxval-clipval+minval".

clip(val)

The computed value in val, clipped to the minval-maxval range.

gammaval(gamma)

The computed gamma correction value of the pixel component value, clipped to the minval-maxval
range. It corresponds to the expression
"pow((clipval-minval)/(maxval-minval)\,gamma)*(maxval-minval)+minval"

All expressions default to "val".

10.102.1 Examples# TOC

Negate input video:

lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"

The above is the same as:

lutrgb="r=negval:g=negval:b=negval"
lutyuv="y=negval:u=negval:v=negval"

Negate luminance:

lutyuv=y=negval

Remove chroma components, turning the video into a graytone image:

lutyuv="u=128:v=128"

Apply a luma burning effect:

lutyuv="y=2*val"

Remove green and blue components:

lutrgb="g=0:b=0"

Set a constant alpha channel value on input:

format=rgba,lutrgb=a="maxval-minval/2"

Correct luminance gamma by a factor of 0.5:

lutyuv=y=gammaval(0.5)

Discard least significant bits of luma:

lutyuv=y=’bitand(val, 128+64+32)’

Technicolor like effect:

lutyuv=u=’(val-maxval/2)*2+maxval/2’:v=’(val-maxval/2)*2+maxval/2’

10.103 lut2, tlut2# TOC

The lut2 filter takes two input streams and outputs one stream.

The tlut2 (time lut2) filter takes two consecutive frames from one single stream.

This filter accepts the following parameters:

c0

set first pixel component expression

c1

set second pixel component expression

c2

set third pixel component expression

c3

set fourth pixel component expression, corresponds to the alpha component

Each of them specifies the expression to use for computing the lookup table for the corresponding pixel
component values.

The exact component associated to each of the c* options depends on the format in inputs.

The expressions can contain the following constants:

w
h

The input width and height.

x

The first input value for the pixel component.

y

The second input value for the pixel component.

bdx

The first input video bit depth.

bdy

The second input video bit depth.

All expressions default to "x".

10.103.1 Examples# TOC

Highlight differences between two RGB video streams:

lut2=’ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,0,pow(2,bdx)-1)’

Highlight differences between two YUV video streams:

lut2=’ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,pow(2,bdx-1),pow(2,bdx)-1):ifnot(x-y,pow(2,bdx-1),pow(2,bdx)-1)’

Show max difference between two video streams:

lut2=’if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1))):if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1))):if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1)))’

10.104 maskedclamp# TOC

Clamp the first input stream with the second input and third input stream.

Returns the value of first stream to be between second input stream - undershoot and third input stream
+ overshoot.

This filter accepts the following options:

undershoot

Default value is 0.

overshoot

Default value is 0.

planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream.
By default value 0xf, all planes will be processed.

10.105 maskedmerge# TOC

Merge the first input stream with the second input stream using per pixel weights in the third input stream.

A value of 0 in the third stream pixel component means that pixel component from first stream is returned
unchanged, while maximum value (eg. 255 for 8-bit videos) means that pixel component from second
stream is returned unchanged. Intermediate values define the amount of merging between both input
stream’s pixel components.

This filter accepts the following options:

planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream.
By default value 0xf, all planes will be processed.

10.106 mcdeint# TOC

Apply motion-compensation deinterlacing.

It needs one field per frame as input and must thus be used together with yadif=1/3 or equivalent.

This filter accepts the following options:

mode

Set the deinterlacing mode.

It accepts one of the following values:

‘fast’
‘medium’
‘slow’

use iterative motion estimation

‘extra_slow’

like ‘slow’, but use multiple reference frames.

Default value is ‘fast’.

parity

Set the picture field parity assumed for the input video. It must be one of the following values:

‘0, tff’

assume top field first

‘1, bff’

assume bottom field first

Default value is ‘bff’.

qp

Set per-block quantization parameter (QP) used by the internal encoder.

Higher values should result in a smoother motion vector field but less optimal individual vectors.
Default value is 1.

10.107 mergeplanes# TOC

Merge color channel components from several video streams.

The filter accepts up to 4 input streams, and merge selected input planes to the output video.

This filter accepts the following options:

mapping

Set input to output plane mapping. Default is 0.

The mappings is specified as a bitmap. It should be specified as a hexadecimal number in the form
0xAa[Bb[Cc[Dd]]]. ’Aa’ describes the mapping for the first plane of the output stream. ’A’ sets the
number of the input stream to use (from 0 to 3), and ’a’ the plane number of the corresponding input
to use (from 0 to 3). The rest of the mappings is similar, ’Bb’ describes the mapping for the output
stream second plane, ’Cc’ describes the mapping for the output stream third plane and ’Dd’ describes
the mapping for the output stream fourth plane.

format

Set output pixel format. Default is yuva444p.

10.107.1 Examples# TOC

Merge three gray video streams of same width and height into single video stream:

[a0][a1][a2]mergeplanes=0x001020:yuv444p

Merge 1st yuv444p stream and 2nd gray video stream into yuva444p video stream:

[a0][a1]mergeplanes=0x00010210:yuva444p

Swap Y and A plane in yuva444p stream:

format=yuva444p,mergeplanes=0x03010200:yuva444p

Swap U and V plane in yuv420p stream:

format=yuv420p,mergeplanes=0x000201:yuv420p

Cast a rgb24 clip to yuv444p:

format=rgb24,mergeplanes=0x000102:yuv444p

10.108 mestimate# TOC

Estimate and export motion vectors using block matching algorithms. Motion vectors are stored in frame
side data to be used by other filters.

This filter accepts the following options:

method

Specify the motion estimation method. Accepts one of the following values:

‘esa’

Exhaustive search algorithm.

‘tss’

Three step search algorithm.

‘tdls’

Two dimensional logarithmic search algorithm.

‘ntss’

New three step search algorithm.

‘fss’

Four step search algorithm.

‘ds’

Diamond search algorithm.

‘hexbs’

Hexagon-based search algorithm.

‘epzs’

Enhanced predictive zonal search algorithm.

‘umh’

Uneven multi-hexagon search algorithm.

Default value is ‘esa’.

mb_size

Macroblock size. Default 16.

search_param

Search parameter. Default 7.

10.109 midequalizer# TOC

Apply Midway Image Equalization effect using two video streams.

Midway Image Equalization adjusts a pair of images to have the same histogram, while maintaining their
dynamics as much as possible. It’s useful for e.g. matching exposures from a pair of stereo cameras.

This filter has two inputs and one output, which must be of same pixel format, but may be of different
sizes. The output of filter is first input adjusted with midway histogram of both inputs.

This filter accepts the following option:

planes

Set which planes to process. Default is 15, which is all available planes.

10.110 minterpolate# TOC

Convert the video to specified frame rate using motion interpolation.

This filter accepts the following options:

fps

Specify the output frame rate. This can be rational e.g. 60000/1001. Frames are dropped if fps is
lower than source fps. Default 60.

mi_mode

Motion interpolation mode. Following values are accepted:

‘dup’

Duplicate previous or next frame for interpolating new ones.

‘blend’

Blend source frames. Interpolated frame is mean of previous and next frames.

‘mci’

Motion compensated interpolation. Following options are effective when this mode is selected:

‘mc_mode’

Motion compensation mode. Following values are accepted:

‘obmc’

Overlapped block motion compensation.

‘aobmc’

Adaptive overlapped block motion compensation. Window weighting coefficients are
controlled adaptively according to the reliabilities of the neighboring motion vectors to
reduce oversmoothing.

Default mode is ‘obmc’.

‘me_mode’

Motion estimation mode. Following values are accepted:

‘bidir’

Bidirectional motion estimation. Motion vectors are estimated for each source frame
in both forward and backward directions.

‘bilat’

Bilateral motion estimation. Motion vectors are estimated directly for interpolated
frame.

Default mode is ‘bilat’.

‘me’

The algorithm to be used for motion estimation. Following values are accepted:

‘esa’

Exhaustive search algorithm.

‘tss’

Three step search algorithm.

‘tdls’

Two dimensional logarithmic search algorithm.

‘ntss’

New three step search algorithm.

‘fss’

Four step search algorithm.

‘ds’

Diamond search algorithm.

‘hexbs’

Hexagon-based search algorithm.

‘epzs’

Enhanced predictive zonal search algorithm.

‘umh’

Uneven multi-hexagon search algorithm.

Default algorithm is ‘epzs’.

‘mb_size’

Macroblock size. Default 16.

‘search_param’

Motion estimation search parameter. Default 32.

‘vsbmc’

Enable variable-size block motion compensation. Motion estimation is applied with smaller
block sizes at object boundaries in order to make the them less blur. Default is 0 (disabled).

scd

Scene change detection method. Scene change leads motion vectors to be in random direction. Scene
change detection replace interpolated frames by duplicate ones. May not be needed for other modes.
Following values are accepted:

‘none’

Disable scene change detection.

‘fdiff’

Frame difference. Corresponding pixel values are compared and if it satisfies scd_threshold
scene change is detected.

Default method is ‘fdiff’.

scd_threshold

Scene change detection threshold. Default is 5.0.

10.111 mix# TOC

Mix several video input streams into one video stream.

A description of the accepted options follows.

nb_inputs

The number of inputs. If unspecified, it defaults to 2.

weights

Specify weight of each input video stream as sequence. Each weight is separated by space. If number
of weights is smaller than number of frames last specified weight will be used for all remaining unset
weights.

scale

Specify scale, if it is set it will be multiplied with sum of each weight multiplied with pixel values to
give final destination pixel value. By default scale is auto scaled to sum of weights.

duration

Specify how end of stream is determined.

‘longest’

The duration of the longest input. (default)

‘shortest’

The duration of the shortest input.

‘first’

The duration of the first input.

10.112 mpdecimate# TOC

Drop frames that do not differ greatly from the previous frame in order to reduce frame rate.

The main use of this filter is for very-low-bitrate encoding (e.g. streaming over dialup modem), but it
could in theory be used for fixing movies that were inverse-telecined incorrectly.

A description of the accepted options follows.

max

Set the maximum number of consecutive frames which can be dropped (if positive), or the minimum
interval between dropped frames (if negative). If the value is 0, the frame is dropped disregarding the
number of previous sequentially dropped frames.

Default value is 0.

hi
lo
frac

Set the dropping threshold values.

Values for hi and lo are for 8x8 pixel blocks and represent actual pixel value differences, so a
threshold of 64 corresponds to 1 unit of difference for each pixel, or the same spread out differently over
the block.

A frame is a candidate for dropping if no 8x8 blocks differ by more than a threshold of hi, and if no
more than frac blocks (1 meaning the whole image) differ by more than a threshold of lo.

Default value for hi is 64*12, default value for lo is 64*5, and default value for frac is 0.33.

10.113 negate# TOC

Negate (invert) the input video.

It accepts the following option:

negate_alpha

With value 1, it negates the alpha component, if present. Default value is 0.

10.114 nlmeans# TOC

Denoise frames using Non-Local Means algorithm.

Each pixel is adjusted by looking for other pixels with similar contexts. This context similarity is defined
by comparing their surrounding patches of size pxp. Patches are searched in an area of rxr around the
pixel.

Note that the research area defines centers for patches, which means some patches will be made of pixels
outside that research area.

The filter accepts the following options.

s

Set denoising strength.

p

Set patch size.

pc

Same as p but for chroma planes.

The default value is 0 and means automatic.

r

Set research size.

rc

Same as r but for chroma planes.

The default value is 0 and means automatic.

10.115 nnedi# TOC

Deinterlace video using neural network edge directed interpolation.

This filter accepts the following options:

weights

Mandatory option, without binary file filter can not work. Currently file can be found here:
https://github.com/dubhater/vapoursynth-nnedi3/blob/master/src/nnedi3_weights.bin

deint

Set which frames to deinterlace, by default it is all. Can be all or interlaced.

field

Set mode of operation.

Can be one of the following:

‘af’

Use frame flags, both fields.

‘a’

Use frame flags, single field.

‘t’

Use top field only.

‘b’

Use bottom field only.

‘tf’

Use both fields, top first.

‘bf’

Use both fields, bottom first.

planes

Set which planes to process, by default filter process all frames.

nsize

Set size of local neighborhood around each pixel, used by the predictor neural network.

Can be one of the following:

‘s8x6’
‘s16x6’
‘s32x6’
‘s48x6’
‘s8x4’
‘s16x4’
‘s32x4’

nns

Set the number of neurons in predictor neural network. Can be one of the following:

‘n16’
‘n32’
‘n64’
‘n128’
‘n256’

qual

Controls the number of different neural network predictions that are blended together to compute the
final output value. Can be fast, default or slow.

etype

Set which set of weights to use in the predictor. Can be one of the following:

‘a’

weights trained to minimize absolute error

‘s’

weights trained to minimize squared error

pscrn

Controls whether or not the prescreener neural network is used to decide which pixels should be
processed by the predictor neural network and which can be handled by simple cubic interpolation.
The prescreener is trained to know whether cubic interpolation will be sufficient for a pixel or
whether it should be predicted by the predictor nn. The computational complexity of the prescreener
nn is much less than that of the predictor nn. Since most pixels can be handled by cubic interpolation,
using the prescreener generally results in much faster processing. The prescreener is pretty accurate,
so the difference between using it and not using it is almost always unnoticeable.

Can be one of the following:

‘none’
‘original’
‘new’

Default is new.

fapprox

Set various debugging flags.

10.116 noformat# TOC

Force libavfilter not to use any of the specified pixel formats for the input to the next filter.

It accepts the following parameters:

pix_fmts

A ’|’-separated list of pixel format names, such as pix_fmts=yuv420p|monow|rgb24".

10.116.1 Examples# TOC

Force libavfilter to use a format different from yuv420p for the input to the vflip filter:

noformat=pix_fmts=yuv420p,vflip

Convert the input video to any of the formats not contained in the list:

noformat=yuv420p|yuv444p|yuv410p

10.117 noise# TOC

Add noise on video input frame.

The filter accepts the following options:

all_seed
c0_seed
c1_seed
c2_seed
c3_seed

Set noise seed for specific pixel component or all pixel components in case of all_seed. Default value
is 123457.

all_strength, alls
c0_strength, c0s
c1_strength, c1s
c2_strength, c2s
c3_strength, c3s

Set noise strength for specific pixel component or all pixel components in case all_strength. Default
value is 0. Allowed range is [0, 100].

all_flags, allf
c0_flags, c0f
c1_flags, c1f
c2_flags, c2f
c3_flags, c3f

Set pixel component flags or set flags for all components if all_flags. Available values for component
flags are:

‘a’

averaged temporal noise (smoother)

‘p’

mix random noise with a (semi)regular pattern

‘t’

temporal noise (noise pattern changes between frames)

‘u’

uniform noise (gaussian otherwise)

10.117.1 Examples# TOC

Add temporal and uniform noise to input video:

noise=alls=20:allf=t+u

10.118 normalize# TOC

Normalize RGB video (aka histogram stretching, contrast stretching). See:
https://en.wikipedia.org/wiki/Normalization_(image_processing)

For each channel of each frame, the filter computes the input range and maps it linearly to the
user-specified output range. The output range defaults to the full dynamic range from pure black to pure
white.

Temporal smoothing can be used on the input range to reduce flickering (rapid changes in brightness)
caused when small dark or bright objects enter or leave the scene. This is similar to the auto-exposure
(automatic gain control) on a video camera, and, like a video camera, it may cause a period of over- or
under-exposure of the video.

The R,G,B channels can be normalized independently, which may cause some color shifting, or linked
together as a single channel, which prevents color shifting. Linked normalization preserves hue.
Independent normalization does not, so it can be used to remove some color casts. Independent and linked
normalization can be combined in any ratio.

The normalize filter accepts the following options:

blackpt
whitept

Colors which define the output range. The minimum input value is mapped to the blackpt. The
maximum input value is mapped to the whitept. The defaults are black and white respectively.
Specifying white for blackpt and black for whitept will give color-inverted, normalized video. Shades
of grey can be used to reduce the dynamic range (contrast). Specifying saturated colors here can
create some interesting effects.

smoothing

The number of previous frames to use for temporal smoothing. The input range of each channel is
smoothed using a rolling average over the current frame and the smoothing previous frames. The
default is 0 (no temporal smoothing).

independence

Controls the ratio of independent (color shifting) channel normalization to linked (color preserving)
normalization. 0.0 is fully linked, 1.0 is fully independent. Defaults to 1.0 (fully independent).

strength

Overall strength of the filter. 1.0 is full strength. 0.0 is a rather expensive no-op. Defaults to 1.0 (full
strength).

10.118.1 Examples# TOC

Stretch video contrast to use the full dynamic range, with no temporal smoothing; may flicker depending
on the source content:

normalize=blackpt=black:whitept=white:smoothing=0

As above, but with 50 frames of temporal smoothing; flicker should be reduced, depending on the source
content:

normalize=blackpt=black:whitept=white:smoothing=50

As above, but with hue-preserving linked channel normalization:

normalize=blackpt=black:whitept=white:smoothing=50:independence=0

As above, but with half strength:

normalize=blackpt=black:whitept=white:smoothing=50:independence=0:strength=0.5

Map the darkest input color to red, the brightest input color to cyan:

normalize=blackpt=red:whitept=cyan

10.119 null# TOC

Pass the video source unchanged to the output.

10.120 ocr# TOC

Optical Character Recognition

This filter uses Tesseract for optical character recognition. To enable compilation of this filter, you need to
configure FFmpeg with --enable-libtesseract.

It accepts the following options:

datapath

Set datapath to tesseract data. Default is to use whatever was set at installation.

language

Set language, default is "eng".

whitelist

Set character whitelist.

blacklist

Set character blacklist.

The filter exports recognized text as the frame metadata lavfi.ocr.text.

10.121 ocv# TOC

Apply a video transform using libopencv.

To enable this filter, install the libopencv library and headers and configure FFmpeg with
--enable-libopencv.

It accepts the following parameters:

filter_name

The name of the libopencv filter to apply.

filter_params

The parameters to pass to the libopencv filter. If not specified, the default values are assumed.

Refer to the official libopencv documentation for more precise information:
http://docs.opencv.org/master/modules/imgproc/doc/filtering.html

Several libopencv filters are supported; see the following subsections.

10.121.1 dilate# TOC

Dilate an image by using a specific structuring element. It corresponds to the libopencv function
cvDilate.

It accepts the parameters: struct_el|nb_iterations.

struct_el represents a structuring element, and has the syntax: colsxrows+anchor_xxanchor_y/shape

cols and rows represent the number of columns and rows of the structuring element, anchor_x and
anchor_y the anchor point, and shape the shape for the structuring element. shape must be "rect", "cross",
"ellipse", or "custom".

http://docs.opencv.org/master/modules/imgproc/doc/filtering.html

If the value for shape is "custom", it must be followed by a string of the form "=filename". The file with
name filename is assumed to represent a binary image, with each printable character corresponding to a
bright pixel. When a custom shape is used, cols and rows are ignored, the number or columns and rows of
the read file are assumed instead.

The default value for struct_el is "3x3+0x0/rect".

nb_iterations specifies the number of times the transform is applied to the image, and defaults to 1.

Some examples:

Use the default values
ocv=dilate

Dilate using a structuring element with a 5x5 cross, iterating two times
ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2

Read the shape from the file diamond.shape, iterating two times.
The file diamond.shape may contain a pattern of characters like this
*

*
The specified columns and rows are ignored
but the anchor point coordinates are not
ocv=dilate:0x0+2x2/custom=diamond.shape|2

10.121.2 erode# TOC

Erode an image by using a specific structuring element. It corresponds to the libopencv function
cvErode.

It accepts the parameters: struct_el:nb_iterations, with the same syntax and semantics as the dilate filter.

10.121.3 smooth# TOC

Smooth the input video.

The filter takes the following parameters: type|param1|param2|param3|param4.

type is the type of smooth filter to apply, and must be one of the following values: "blur", "blur_no_scale",
"median", "gaussian", or "bilateral". The default value is "gaussian".

The meaning of param1, param2, param3, and param4 depend on the smooth type. param1 and param2
accept integer positive values or 0. param3 and param4 accept floating point values.

The default value for param1 is 3. The default value for the other parameters is 0.

These parameters correspond to the parameters assigned to the libopencv function cvSmooth.

10.122 oscilloscope# TOC

2D Video Oscilloscope.

Useful to measure spatial impulse, step responses, chroma delays, etc.

It accepts the following parameters:

x

Set scope center x position.

y

Set scope center y position.

s

Set scope size, relative to frame diagonal.

t

Set scope tilt/rotation.

o

Set trace opacity.

tx

Set trace center x position.

ty

Set trace center y position.

tw

Set trace width, relative to width of frame.

th

Set trace height, relative to height of frame.

c

Set which components to trace. By default it traces first three components.

g

Draw trace grid. By default is enabled.

st

Draw some statistics. By default is enabled.

sc

Draw scope. By default is enabled.

10.122.1 Examples# TOC

Inspect full first row of video frame.

oscilloscope=x=0.5:y=0:s=1

Inspect full last row of video frame.

oscilloscope=x=0.5:y=1:s=1

Inspect full 5th line of video frame of height 1080.

oscilloscope=x=0.5:y=5/1080:s=1

Inspect full last column of video frame.

oscilloscope=x=1:y=0.5:s=1:t=1

10.123 overlay# TOC

Overlay one video on top of another.

It takes two inputs and has one output. The first input is the "main" video on which the second input is
overlaid.

It accepts the following parameters:

A description of the accepted options follows.

x
y

Set the expression for the x and y coordinates of the overlaid video on the main video. Default value
is "0" for both expressions. In case the expression is invalid, it is set to a huge value (meaning that the
overlay will not be displayed within the output visible area).

eof_action

See framesync.

eval

Set when the expressions for x, and y are evaluated.

It accepts the following values:

‘init’

only evaluate expressions once during the filter initialization or when a command is processed

‘frame’

evaluate expressions for each incoming frame

Default value is ‘frame’.

shortest

See framesync.

format

Set the format for the output video.

It accepts the following values:

‘yuv420’

force YUV420 output

‘yuv422’

force YUV422 output

‘yuv444’

force YUV444 output

‘rgb’

force packed RGB output

‘gbrp’

force planar RGB output

‘auto’

automatically pick format

Default value is ‘yuv420’.

repeatlast

See framesync.

alpha

Set format of alpha of the overlaid video, it can be straight or premultiplied. Default is straight.

The x, and y expressions can contain the following parameters.

main_w, W
main_h, H

The main input width and height.

overlay_w, w
overlay_h, h

The overlay input width and height.

x
y

The computed values for x and y. They are evaluated for each new frame.

hsub
vsub

horizontal and vertical chroma subsample values of the output format. For example for the pixel
format "yuv422p" hsub is 2 and vsub is 1.

n

the number of input frame, starting from 0

pos

the position in the file of the input frame, NAN if unknown

t

The timestamp, expressed in seconds. It’s NAN if the input timestamp is unknown.

This filter also supports the framesync options.

Note that the n, pos, t variables are available only when evaluation is done per frame, and will evaluate to
NAN when eval is set to ‘init’.

Be aware that frames are taken from each input video in timestamp order, hence, if their initial timestamps
differ, it is a good idea to pass the two inputs through a setpts=PTS-STARTPTS filter to have them begin
in the same zero timestamp, as the example for the movie filter does.

You can chain together more overlays but you should test the efficiency of such approach.

10.123.1 Commands# TOC

This filter supports the following commands:

x
y

Modify the x and y of the overlay input. The command accepts the same syntax of the corresponding
option.

If the specified expression is not valid, it is kept at its current value.

10.123.2 Examples# TOC

Draw the overlay at 10 pixels from the bottom right corner of the main video:

overlay=main_w-overlay_w-10:main_h-overlay_h-10

Using named options the example above becomes:

overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10

Insert a transparent PNG logo in the bottom left corner of the input, using the ffmpeg tool with the
-filter_complex option:

ffmpeg -i input -i logo -filter_complex ’overlay=10:main_h-overlay_h-10’ output

Insert 2 different transparent PNG logos (second logo on bottom right corner) using the ffmpeg
tool:

ffmpeg -i input -i logo1 -i logo2 -filter_complex ’overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10’ output

Add a transparent color layer on top of the main video; WxH must specify the size of the main input to
the overlay filter:

color=color=red@.3:size=WxH [over]; [in][over] overlay [out]

Play an original video and a filtered version (here with the deshake filter) side by side using the

ffplay tool:

ffplay input.avi -vf ’split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w’

The above command is the same as:

ffplay input.avi -vf ’split[b], pad=iw*2[src], [b]deshake, [src]overlay=w’

Make a sliding overlay appearing from the left to the right top part of the screen starting since time 2:

overlay=x=’if(gte(t,2), -w+(t-2)*20, NAN)’:y=0

Compose output by putting two input videos side to side:

ffmpeg -i left.avi -i right.avi -filter_complex "
nullsrc=size=200x100 [background];
[0:v] setpts=PTS-STARTPTS, scale=100x100 [left];
[1:v] setpts=PTS-STARTPTS, scale=100x100 [right];
[background][left] overlay=shortest=1 [background+left];
[background+left][right] overlay=shortest=1:x=100 [left+right]
"

Mask 10-20 seconds of a video by applying the delogo filter to a section

ffmpeg -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
-vf ’[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]’
masked.avi

Chain several overlays in cascade:

nullsrc=s=200x200 [bg];
testsrc=s=100x100, split=4 [in0][in1][in2][in3];
[in0] lutrgb=r=0, [bg] overlay=0:0 [mid0];
[in1] lutrgb=g=0, [mid0] overlay=100:0 [mid1];
[in2] lutrgb=b=0, [mid1] overlay=0:100 [mid2];
[in3] null, [mid2] overlay=100:100 [out0]

10.124 owdenoise# TOC

Apply Overcomplete Wavelet denoiser.

The filter accepts the following options:

depth

Set depth.

Larger depth values will denoise lower frequency components more, but slow down filtering.

Must be an int in the range 8-16, default is 8.

luma_strength, ls

Set luma strength.

Must be a double value in the range 0-1000, default is 1.0.

chroma_strength, cs

Set chroma strength.

Must be a double value in the range 0-1000, default is 1.0.

10.125 pad# TOC

Add paddings to the input image, and place the original input at the provided x, y coordinates.

It accepts the following parameters:

width, w
height, h

Specify an expression for the size of the output image with the paddings added. If the value for width
or height is 0, the corresponding input size is used for the output.

The width expression can reference the value set by the height expression, and vice versa.

The default value of width and height is 0.

x
y

Specify the offsets to place the input image at within the padded area, with respect to the top/left
border of the output image.

The x expression can reference the value set by the y expression, and vice versa.

The default value of x and y is 0.

If x or y evaluate to a negative number, they’ll be changed so the input image is centered on the
padded area.

color

Specify the color of the padded area. For the syntax of this option, check the (ffmpeg-utils)"Color"
section in the ffmpeg-utils manual.

The default value of color is "black".

eval

Specify when to evaluate width, height, x and y expression.

It accepts the following values:

‘init’

Only evaluate expressions once during the filter initialization or when a command is processed.

‘frame’

Evaluate expressions for each incoming frame.

Default value is ‘init’.

aspect

Pad to aspect instead to a resolution.

The value for the width, height, x, and y options are expressions containing the following constants:

in_w
in_h

The input video width and height.

iw
ih

These are the same as in_w and in_h.

out_w
out_h

The output width and height (the size of the padded area), as specified by the width and height
expressions.

ow
oh

These are the same as out_w and out_h.

x
y

The x and y offsets as specified by the x and y expressions, or NAN if not yet specified.

a

same as iw / ih

sar

input sample aspect ratio

dar

input display aspect ratio, it is the same as (iw / ih) * sar

hsub
vsub

The horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

10.125.1 Examples# TOC

Add paddings with the color "violet" to the input video. The output video size is 640x480, and the
top-left corner of the input video is placed at column 0, row 40

pad=640:480:0:40:violet

The example above is equivalent to the following command:

pad=width=640:height=480:x=0:y=40:color=violet

Pad the input to get an output with dimensions increased by 3/2, and put the input video at the center
of the padded area:

pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"

Pad the input to get a squared output with size equal to the maximum value between the input width
and height, and put the input video at the center of the padded area:

pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"

Pad the input to get a final w/h ratio of 16:9:

pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"

In case of anamorphic video, in order to set the output display aspect correctly, it is necessary to use
sar in the expression, according to the relation:

(ih * X / ih) * sar = output_dar
X = output_dar / sar

Thus the previous example needs to be modified to:

pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"

Double the output size and put the input video in the bottom-right corner of the output padded area:

pad="2*iw:2*ih:ow-iw:oh-ih"

10.126 palettegen# TOC

Generate one palette for a whole video stream.

It accepts the following options:

max_colors

Set the maximum number of colors to quantize in the palette. Note: the palette will still contain 256
colors; the unused palette entries will be black.

reserve_transparent

Create a palette of 255 colors maximum and reserve the last one for transparency. Reserving the
transparency color is useful for GIF optimization. If not set, the maximum of colors in the palette will
be 256. You probably want to disable this option for a standalone image. Set by default.

transparency_color

Set the color that will be used as background for transparency.

stats_mode

Set statistics mode.

It accepts the following values:

‘full’

Compute full frame histograms.

‘diff’

Compute histograms only for the part that differs from previous frame. This might be relevant to
give more importance to the moving part of your input if the background is static.

‘single’

Compute new histogram for each frame.

Default value is full.

The filter also exports the frame metadata lavfi.color_quant_ratio (nb_color_in /
nb_color_out) which you can use to evaluate the degree of color quantization of the palette. This
information is also visible at info logging level.

10.126.1 Examples# TOC

Generate a representative palette of a given video using ffmpeg:

ffmpeg -i input.mkv -vf palettegen palette.png

10.127 paletteuse# TOC

Use a palette to downsample an input video stream.

The filter takes two inputs: one video stream and a palette. The palette must be a 256 pixels image.

It accepts the following options:

dither

Select dithering mode. Available algorithms are:

‘bayer’

Ordered 8x8 bayer dithering (deterministic)

‘heckbert’

Dithering as defined by Paul Heckbert in 1982 (simple error diffusion). Note: this dithering is
sometimes considered "wrong" and is included as a reference.

‘floyd_steinberg’

Floyd and Steingberg dithering (error diffusion)

‘sierra2’

Frankie Sierra dithering v2 (error diffusion)

‘sierra2_4a’

Frankie Sierra dithering v2 "Lite" (error diffusion)

Default is sierra2_4a.

bayer_scale

When bayer dithering is selected, this option defines the scale of the pattern (how much the
crosshatch pattern is visible). A low value means more visible pattern for less banding, and higher value
means less visible pattern at the cost of more banding.

The option must be an integer value in the range [0,5]. Default is 2.

diff_mode

If set, define the zone to process

‘rectangle’

Only the changing rectangle will be reprocessed. This is similar to GIF cropping/offsetting
compression mechanism. This option can be useful for speed if only a part of the image is
changing, and has use cases such as limiting the scope of the error diffusal dither to the
rectangle that bounds the moving scene (it leads to more deterministic output if the scene
doesn’t change much, and as a result less moving noise and better GIF compression).

Default is none.

new

Take new palette for each output frame.

alpha_threshold

Sets the alpha threshold for transparency. Alpha values above this threshold will be treated as
completely opaque, and values below this threshold will be treated as completely transparent.

The option must be an integer value in the range [0,255]. Default is 128.

10.127.1 Examples# TOC

Use a palette (generated for example with palettegen) to encode a GIF using ffmpeg:

ffmpeg -i input.mkv -i palette.png -lavfi paletteuse output.gif

10.128 perspective# TOC

Correct perspective of video not recorded perpendicular to the screen.

A description of the accepted parameters follows.

x0
y0
x1
y1

x2
y2
x3
y3

Set coordinates expression for top left, top right, bottom left and bottom right corners. Default values
are 0:0:W:0:0:H:W:H with which perspective will remain unchanged. If the sense option is set
to source, then the specified points will be sent to the corners of the destination. If the sense
option is set to destination, then the corners of the source will be sent to the specified
coordinates.

The expressions can use the following variables:

W
H

the width and height of video frame.

in

Input frame count.

on

Output frame count.

interpolation

Set interpolation for perspective correction.

It accepts the following values:

‘linear’
‘cubic’

Default value is ‘linear’.

sense

Set interpretation of coordinate options.

It accepts the following values:

‘0, source’

Send point in the source specified by the given coordinates to the corners of the destination.

‘1, destination’

Send the corners of the source to the point in the destination specified by the given coordinates.

Default value is ‘source’.

eval

Set when the expressions for coordinates x0,y0,...x3,y3 are evaluated.

It accepts the following values:

‘init’

only evaluate expressions once during the filter initialization or when a command is processed

‘frame’

evaluate expressions for each incoming frame

Default value is ‘init’.

10.129 phase# TOC

Delay interlaced video by one field time so that the field order changes.

The intended use is to fix PAL movies that have been captured with the opposite field order to the
film-to-video transfer.

A description of the accepted parameters follows.

mode

Set phase mode.

It accepts the following values:

‘t’

Capture field order top-first, transfer bottom-first. Filter will delay the bottom field.

‘b’

Capture field order bottom-first, transfer top-first. Filter will delay the top field.

‘p’

Capture and transfer with the same field order. This mode only exists for the documentation of
the other options to refer to, but if you actually select it, the filter will faithfully do nothing.

‘a’

Capture field order determined automatically by field flags, transfer opposite. Filter selects
among ‘t’ and ‘b’ modes on a frame by frame basis using field flags. If no field information is
available, then this works just like ‘u’.

‘u’

Capture unknown or varying, transfer opposite. Filter selects among ‘t’ and ‘b’ on a frame by
frame basis by analyzing the images and selecting the alternative that produces best match
between the fields.

‘T’

Capture top-first, transfer unknown or varying. Filter selects among ‘t’ and ‘p’ using image
analysis.

‘B’

Capture bottom-first, transfer unknown or varying. Filter selects among ‘b’ and ‘p’ using image
analysis.

‘A’

Capture determined by field flags, transfer unknown or varying. Filter selects among ‘t’, ‘b’
and ‘p’ using field flags and image analysis. If no field information is available, then this works
just like ‘U’. This is the default mode.

‘U’

Both capture and transfer unknown or varying. Filter selects among ‘t’, ‘b’ and ‘p’ using image
analysis only.

10.130 pixdesctest# TOC

Pixel format descriptor test filter, mainly useful for internal testing. The output video should be equal to
the input video.

For example:

format=monow, pixdesctest

can be used to test the monowhite pixel format descriptor definition.

10.131 pixscope# TOC

Display sample values of color channels. Mainly useful for checking color and levels. Minimum supported
resolution is 640x480.

The filters accept the following options:

x

Set scope X position, relative offset on X axis.

y

Set scope Y position, relative offset on Y axis.

w

Set scope width.

h

Set scope height.

o

Set window opacity. This window also holds statistics about pixel area.

wx

Set window X position, relative offset on X axis.

wy

Set window Y position, relative offset on Y axis.

10.132 pp# TOC

Enable the specified chain of postprocessing subfilters using libpostproc. This library should be
automatically selected with a GPL build (--enable-gpl). Subfilters must be separated by ’/’ and can
be disabled by prepending a ’-’. Each subfilter and some options have a short and a long name that can be
used interchangeably, i.e. dr/dering are the same.

The filters accept the following options:

subfilters

Set postprocessing subfilters string.

All subfilters share common options to determine their scope:

a/autoq

Honor the quality commands for this subfilter.

c/chrom

Do chrominance filtering, too (default).

y/nochrom

Do luminance filtering only (no chrominance).

n/noluma

Do chrominance filtering only (no luminance).

These options can be appended after the subfilter name, separated by a ’|’.

Available subfilters are:

hb/hdeblock[|difference[|flatness]]

Horizontal deblocking filter

difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

vb/vdeblock[|difference[|flatness]]

Vertical deblocking filter

difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

ha/hadeblock[|difference[|flatness]]

Accurate horizontal deblocking filter

difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

va/vadeblock[|difference[|flatness]]

Accurate vertical deblocking filter

difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

The horizontal and vertical deblocking filters share the difference and flatness values so you cannot set
different horizontal and vertical thresholds.

h1/x1hdeblock

Experimental horizontal deblocking filter

v1/x1vdeblock

Experimental vertical deblocking filter

dr/dering

Deringing filter

tn/tmpnoise[|threshold1[|threshold2[|threshold3]]], temporal noise
reducer

threshold1

larger -> stronger filtering

threshold2

larger -> stronger filtering

threshold3

larger -> stronger filtering

al/autolevels[:f/fullyrange], automatic brightness / contrast
correction

f/fullyrange

Stretch luminance to 0-255.

lb/linblenddeint

Linear blend deinterlacing filter that deinterlaces the given block by filtering all lines with a (1 2
1) filter.

li/linipoldeint

Linear interpolating deinterlacing filter that deinterlaces the given block by linearly interpolating
every second line.

ci/cubicipoldeint

Cubic interpolating deinterlacing filter deinterlaces the given block by cubically interpolating every
second line.

md/mediandeint

Median deinterlacing filter that deinterlaces the given block by applying a median filter to every
second line.

fd/ffmpegdeint

FFmpeg deinterlacing filter that deinterlaces the given block by filtering every second line with a
(-1 4 2 4 -1) filter.

l5/lowpass5

Vertically applied FIR lowpass deinterlacing filter that deinterlaces the given block by filtering all
lines with a (-1 2 6 2 -1) filter.

fq/forceQuant[|quantizer]

Overrides the quantizer table from the input with the constant quantizer you specify.

quantizer

Quantizer to use

de/default

Default pp filter combination (hb|a,vb|a,dr|a)

fa/fast

Fast pp filter combination (h1|a,v1|a,dr|a)

ac

High quality pp filter combination (ha|a|128|7,va|a,dr|a)

10.132.1 Examples# TOC

Apply horizontal and vertical deblocking, deringing and automatic brightness/contrast:

pp=hb/vb/dr/al

Apply default filters without brightness/contrast correction:

pp=de/-al

Apply default filters and temporal denoiser:

pp=default/tmpnoise|1|2|3

Apply deblocking on luminance only, and switch vertical deblocking on or off automatically
depending on available CPU time:

pp=hb|y/vb|a

10.133 pp7# TOC

Apply Postprocessing filter 7. It is variant of the spp filter, similar to spp = 6 with 7 point DCT, where
only the center sample is used after IDCT.

The filter accepts the following options:

qp

Force a constant quantization parameter. It accepts an integer in range 0 to 63. If not set, the filter
will use the QP from the video stream (if available).

mode

Set thresholding mode. Available modes are:

‘hard’

Set hard thresholding.

‘soft’

Set soft thresholding (better de-ringing effect, but likely blurrier).

‘medium’

Set medium thresholding (good results, default).

10.134 premultiply# TOC

Apply alpha premultiply effect to input video stream using first plane of second stream as alpha.

Both streams must have same dimensions and same pixel format.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

inplace

Do not require 2nd input for processing, instead use alpha plane from input stream.

10.135 prewitt# TOC

Apply prewitt operator to input video stream.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

scale

Set value which will be multiplied with filtered result.

delta

Set value which will be added to filtered result.

10.136 program_opencl# TOC

Filter video using an OpenCL program.

source

OpenCL program source file.

kernel

Kernel name in program.

inputs

Number of inputs to the filter. Defaults to 1.

size, s

Size of output frames. Defaults to the same as the first input.

The program source file must contain a kernel function with the given name, which will be run once for
each plane of the output. Each run on a plane gets enqueued as a separate 2D global NDRange with one
work-item for each pixel to be generated. The global ID offset for each work-item is therefore the
coordinates of a pixel in the destination image.

The kernel function needs to take the following arguments:

Destination image, __write_only image2d_t.

This image will become the output; the kernel should write all of it.

Frame index, unsigned int.

This is a counter starting from zero and increasing by one for each frame.

Source images, __read_only image2d_t.

These are the most recent images on each input. The kernel may read from them to generate the
output, but they can’t be written to.

Example programs:

Copy the input to the output (output must be the same size as the input).

__kernel void copy(__write_only image2d_t destination,
 unsigned int index,
 __read_only image2d_t source)
{
 const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE;

 int2 location = (int2)(get_global_id(0), get_global_id(1));

 float4 value = read_imagef(source, sampler, location);

 write_imagef(destination, location, value);
}

Apply a simple transformation, rotating the input by an amount increasing with the index counter.
Pixel values are linearly interpolated by the sampler, and the output need not have the same
dimensions as the input.

__kernel void rotate_image(__write_only image2d_t dst,
 unsigned int index,
 __read_only image2d_t src)
{
 const sampler_t sampler = (CLK_NORMALIZED_COORDS_FALSE |
 CLK_FILTER_LINEAR);

 float angle = (float)index / 100.0f;

 float2 dst_dim = convert_float2(get_image_dim(dst));
 float2 src_dim = convert_float2(get_image_dim(src));

 float2 dst_cen = dst_dim / 2.0f;
 float2 src_cen = src_dim / 2.0f;

 int2 dst_loc = (int2)(get_global_id(0), get_global_id(1));

 float2 dst_pos = convert_float2(dst_loc) - dst_cen;
 float2 src_pos = {
 cos(angle) * dst_pos.x - sin(angle) * dst_pos.y,
 sin(angle) * dst_pos.x + cos(angle) * dst_pos.y
 };
 src_pos = src_pos * src_dim / dst_dim;

 float2 src_loc = src_pos + src_cen;

 if (src_loc.x < 0.0f || src_loc.y < 0.0f ||
 src_loc.x > src_dim.x || src_loc.y > src_dim.y)
 write_imagef(dst, dst_loc, 0.5f);
 else
 write_imagef(dst, dst_loc, read_imagef(src, sampler, src_loc));
}

Blend two inputs together, with the amount of each input used varying with the index counter.

__kernel void blend_images(__write_only image2d_t dst,
 unsigned int index,
 __read_only image2d_t src1,
 __read_only image2d_t src2)
{
 const sampler_t sampler = (CLK_NORMALIZED_COORDS_FALSE |
 CLK_FILTER_LINEAR);

 float blend = (cos((float)index / 50.0f) + 1.0f) / 2.0f;

 int2 dst_loc = (int2)(get_global_id(0), get_global_id(1));

 int2 src1_loc = dst_loc * get_image_dim(src1) / get_image_dim(dst);
 int2 src2_loc = dst_loc * get_image_dim(src2) / get_image_dim(dst);

 float4 val1 = read_imagef(src1, sampler, src1_loc);
 float4 val2 = read_imagef(src2, sampler, src2_loc);

 write_imagef(dst, dst_loc, val1 * blend + val2 * (1.0f - blend));
}

10.137 pseudocolor# TOC

Alter frame colors in video with pseudocolors.

This filter accept the following options:

c0

set pixel first component expression

c1

set pixel second component expression

c2

set pixel third component expression

c3

set pixel fourth component expression, corresponds to the alpha component

i

set component to use as base for altering colors

Each of them specifies the expression to use for computing the lookup table for the corresponding pixel
component values.

The expressions can contain the following constants and functions:

w
h

The input width and height.

val

The input value for the pixel component.

ymin, umin, vmin, amin

The minimum allowed component value.

ymax, umax, vmax, amax

The maximum allowed component value.

All expressions default to "val".

10.137.1 Examples# TOC

Change too high luma values to gradient:
pseudocolor="’if(between(val,ymax,amax),lerp(ymin,ymax,(val-ymax)/(amax-ymax)),-1):if(between(val,ymax,amax),lerp(umax,umin,(val-ymax)/(amax-ymax)),-1):if(between(val,ymax,amax),lerp(vmin,vmax,(val-ymax)/(amax-ymax)),-1):-1’"

10.138 psnr# TOC

Obtain the average, maximum and minimum PSNR (Peak Signal to Noise Ratio) between two input
videos.

This filter takes in input two input videos, the first input is considered the "main" source and is passed
unchanged to the output. The second input is used as a "reference" video for computing the PSNR.

Both video inputs must have the same resolution and pixel format for this filter to work correctly. Also it
assumes that both inputs have the same number of frames, which are compared one by one.

The obtained average PSNR is printed through the logging system.

The filter stores the accumulated MSE (mean squared error) of each frame, and at the end of the
processing it is averaged across all frames equally, and the following formula is applied to obtain the
PSNR:

PSNR = 10*log10(MAX^2/MSE)

Where MAX is the average of the maximum values of each component of the image.

The description of the accepted parameters follows.

stats_file, f

If specified the filter will use the named file to save the PSNR of each individual frame. When
filename equals "-" the data is sent to standard output.

stats_version

Specifies which version of the stats file format to use. Details of each format are written below.
Default value is 1.

stats_add_max

Determines whether the max value is output to the stats log. Default value is 0. Requires
stats_version >= 2. If this is set and stats_version < 2, the filter will return an error.

This filter also supports the framesync options.

The file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value for
each compared couple of frames.

If a stats_version greater than 1 is specified, a header line precedes the list of per-frame-pair stats, with
key value pairs following the frame format with the following parameters:

psnr_log_version

The version of the log file format. Will match stats_version.

fields

A comma separated list of the per-frame-pair parameters included in the log.

A description of each shown per-frame-pair parameter follows:

n

sequential number of the input frame, starting from 1

mse_avg

Mean Square Error pixel-by-pixel average difference of the compared frames, averaged over all the
image components.

mse_y, mse_u, mse_v, mse_r, mse_g, mse_b, mse_a

Mean Square Error pixel-by-pixel average difference of the compared frames for the component
specified by the suffix.

psnr_y, psnr_u, psnr_v, psnr_r, psnr_g, psnr_b, psnr_a

Peak Signal to Noise ratio of the compared frames for the component specified by the suffix.

max_avg, max_y, max_u, max_v

Maximum allowed value for each channel, and average over all channels.

For example:

movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
[main][ref] psnr="stats_file=stats.log" [out]

On this example the input file being processed is compared with the reference file ref_movie.mpg.
The PSNR of each individual frame is stored in stats.log.

10.139 pullup# TOC

Pulldown reversal (inverse telecine) filter, capable of handling mixed hard-telecine, 24000/1001 fps
progressive, and 30000/1001 fps progressive content.

The pullup filter is designed to take advantage of future context in making its decisions. This filter is
stateless in the sense that it does not lock onto a pattern to follow, but it instead looks forward to the
following fields in order to identify matches and rebuild progressive frames.

To produce content with an even framerate, insert the fps filter after pullup, use fps=24000/1001 if the
input frame rate is 29.97fps, fps=24 for 30fps and the (rare) telecined 25fps input.

The filter accepts the following options:

jl
jr
jt
jb

These options set the amount of "junk" to ignore at the left, right, top, and bottom of the image,
respectively. Left and right are in units of 8 pixels, while top and bottom are in units of 2 lines. The
default is 8 pixels on each side.

sb

Set the strict breaks. Setting this option to 1 will reduce the chances of filter generating an occasional
mismatched frame, but it may also cause an excessive number of frames to be dropped during high
motion sequences. Conversely, setting it to -1 will make filter match fields more easily. This may
help processing of video where there is slight blurring between the fields, but may also cause there to
be interlaced frames in the output. Default value is 0.

mp

Set the metric plane to use. It accepts the following values:

‘l’

Use luma plane.

‘u’

Use chroma blue plane.

‘v’

Use chroma red plane.

This option may be set to use chroma plane instead of the default luma plane for doing filter’s
computations. This may improve accuracy on very clean source material, but more likely will
decrease accuracy, especially if there is chroma noise (rainbow effect) or any grayscale video. The
main purpose of setting mp to a chroma plane is to reduce CPU load and make pullup usable in
realtime on slow machines.

For best results (without duplicated frames in the output file) it is necessary to change the output frame
rate. For example, to inverse telecine NTSC input:

ffmpeg -i input -vf pullup -r 24000/1001 ...

10.140 qp# TOC

Change video quantization parameters (QP).

The filter accepts the following option:

qp

Set expression for quantization parameter.

The expression is evaluated through the eval API and can contain, among others, the following constants:

known

1 if index is not 129, 0 otherwise.

qp

Sequential index starting from -129 to 128.

10.140.1 Examples# TOC

Some equation like:

qp=2+2*sin(PI*qp)

10.141 random# TOC

Flush video frames from internal cache of frames into a random order. No frame is discarded. Inspired by
frei0r nervous filter.

frames

Set size in number of frames of internal cache, in range from 2 to 512. Default is 30.

seed

Set seed for random number generator, must be an integer included between 0 and UINT32_MAX. If
not specified, or if explicitly set to less than 0, the filter will try to use a good random seed on a best
effort basis.

10.142 readeia608# TOC

Read closed captioning (EIA-608) information from the top lines of a video frame.

This filter adds frame metadata for lavfi.readeia608.X.cc and lavfi.readeia608.X.line,
where X is the number of the identified line with EIA-608 data (starting from 0). A description of each
metadata value follows:

lavfi.readeia608.X.cc

The two bytes stored as EIA-608 data (printed in hexadecimal).

lavfi.readeia608.X.line

The number of the line on which the EIA-608 data was identified and read.

This filter accepts the following options:

scan_min

Set the line to start scanning for EIA-608 data. Default is 0.

scan_max

Set the line to end scanning for EIA-608 data. Default is 29.

mac

Set minimal acceptable amplitude change for sync codes detection. Default is 0.2. Allowed range is
[0.001 - 1].

spw

Set the ratio of width reserved for sync code detection. Default is 0.27. Allowed range is [0.01 -
0.7].

mhd

Set the max peaks height difference for sync code detection. Default is 0.1. Allowed range is [0.0
- 0.5].

mpd

Set max peaks period difference for sync code detection. Default is 0.1. Allowed range is [0.0 -
0.5].

msd

Set the first two max start code bits differences. Default is 0.02. Allowed range is [0.0 - 0.5].

bhd

Set the minimum ratio of bits height compared to 3rd start code bit. Default is 0.75. Allowed range
is [0.01 - 1].

th_w

Set the white color threshold. Default is 0.35. Allowed range is [0.1 - 1].

th_b

Set the black color threshold. Default is 0.15. Allowed range is [0.0 - 0.5].

chp

Enable checking the parity bit. In the event of a parity error, the filter will output 0x00 for that
character. Default is false.

10.142.1 Examples# TOC

Output a csv with presentation time and the first two lines of identified EIA-608 captioning data.

ffprobe -f lavfi -i movie=captioned_video.mov,readeia608 -show_entries frame=pkt_pts_time:frame_tags=lavfi.readeia608.0.cc,lavfi.readeia608.1.cc -of csv

10.143 readvitc# TOC

Read vertical interval timecode (VITC) information from the top lines of a video frame.

The filter adds frame metadata key lavfi.readvitc.tc_str with the timecode value, if a valid
timecode has been detected. Further metadata key lavfi.readvitc.found is set to 0/1 depending on
whether timecode data has been found or not.

This filter accepts the following options:

scan_max

Set the maximum number of lines to scan for VITC data. If the value is set to -1 the full video frame
is scanned. Default is 45.

thr_b

Set the luma threshold for black. Accepts float numbers in the range [0.0,1.0], default value is 0.2.
The value must be equal or less than thr_w.

thr_w

Set the luma threshold for white. Accepts float numbers in the range [0.0,1.0], default value is 0.6.
The value must be equal or greater than thr_b.

10.143.1 Examples# TOC

Detect and draw VITC data onto the video frame; if no valid VITC is detected, draw --:--:--:--
as a placeholder:

ffmpeg -i input.avi -filter:v ’readvitc,drawtext=fontfile=FreeMono.ttf:text=%{metadata\\:lavfi.readvitc.tc_str\\:--\\\\\\:--\\\\\\:--\\\\\\:--}:x=(w-tw)/2:y=400-ascent’

10.144 remap# TOC

Remap pixels using 2nd: Xmap and 3rd: Ymap input video stream.

Destination pixel at position (X, Y) will be picked from source (x, y) position where x = Xmap(X, Y) and
y = Ymap(X, Y). If mapping values are out of range, zero value for pixel will be used for destination
pixel.

Xmap and Ymap input video streams must be of same dimensions. Output video stream will have
Xmap/Ymap video stream dimensions. Xmap and Ymap input video streams are 16bit depth, single
channel.

10.145 removegrain# TOC

The removegrain filter is a spatial denoiser for progressive video.

m0

Set mode for the first plane.

m1

Set mode for the second plane.

m2

Set mode for the third plane.

m3

Set mode for the fourth plane.

Range of mode is from 0 to 24. Description of each mode follows:

0

Leave input plane unchanged. Default.

1

Clips the pixel with the minimum and maximum of the 8 neighbour pixels.

2

Clips the pixel with the second minimum and maximum of the 8 neighbour pixels.

3

Clips the pixel with the third minimum and maximum of the 8 neighbour pixels.

4

Clips the pixel with the fourth minimum and maximum of the 8 neighbour pixels. This is equivalent
to a median filter.

5

Line-sensitive clipping giving the minimal change.

6

Line-sensitive clipping, intermediate.

7

Line-sensitive clipping, intermediate.

8

Line-sensitive clipping, intermediate.

9

Line-sensitive clipping on a line where the neighbours pixels are the closest.

10

Replaces the target pixel with the closest neighbour.

11

[1 2 1] horizontal and vertical kernel blur.

12

Same as mode 11.

13

Bob mode, interpolates top field from the line where the neighbours pixels are the closest.

14

Bob mode, interpolates bottom field from the line where the neighbours pixels are the closest.

15

Bob mode, interpolates top field. Same as 13 but with a more complicated interpolation formula.

16

Bob mode, interpolates bottom field. Same as 14 but with a more complicated interpolation formula.

17

Clips the pixel with the minimum and maximum of respectively the maximum and minimum of each
pair of opposite neighbour pixels.

18

Line-sensitive clipping using opposite neighbours whose greatest distance from the current pixel is
minimal.

19

Replaces the pixel with the average of its 8 neighbours.

20

Averages the 9 pixels ([1 1 1] horizontal and vertical blur).

21

Clips pixels using the averages of opposite neighbour.

22

Same as mode 21 but simpler and faster.

23

Small edge and halo removal, but reputed useless.

24

Similar as 23.

10.146 removelogo# TOC

Suppress a TV station logo, using an image file to determine which pixels comprise the logo. It works by
filling in the pixels that comprise the logo with neighboring pixels.

The filter accepts the following options:

filename, f

Set the filter bitmap file, which can be any image format supported by libavformat. The width and
height of the image file must match those of the video stream being processed.

Pixels in the provided bitmap image with a value of zero are not considered part of the logo, non-zero
pixels are considered part of the logo. If you use white (255) for the logo and black (0) for the rest, you
will be safe. For making the filter bitmap, it is recommended to take a screen capture of a black frame with
the logo visible, and then using a threshold filter followed by the erode filter once or twice.

If needed, little splotches can be fixed manually. Remember that if logo pixels are not covered, the filter
quality will be much reduced. Marking too many pixels as part of the logo does not hurt as much, but it
will increase the amount of blurring needed to cover over the image and will destroy more information
than necessary, and extra pixels will slow things down on a large logo.

10.147 repeatfields# TOC

This filter uses the repeat_field flag from the Video ES headers and hard repeats fields based on its value.

10.148 reverse# TOC

Reverse a video clip.

Warning: This filter requires memory to buffer the entire clip, so trimming is suggested.

10.148.1 Examples# TOC

Take the first 5 seconds of a clip, and reverse it.

trim=end=5,reverse

10.149 roberts# TOC

Apply roberts cross operator to input video stream.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

scale

Set value which will be multiplied with filtered result.

delta

Set value which will be added to filtered result.

10.150 rotate# TOC

Rotate video by an arbitrary angle expressed in radians.

The filter accepts the following options:

A description of the optional parameters follows.

angle, a

Set an expression for the angle by which to rotate the input video clockwise, expressed as a number
of radians. A negative value will result in a counter-clockwise rotation. By default it is set to "0".

This expression is evaluated for each frame.

out_w, ow

Set the output width expression, default value is "iw". This expression is evaluated just once during
configuration.

out_h, oh

Set the output height expression, default value is "ih". This expression is evaluated just once during
configuration.

bilinear

Enable bilinear interpolation if set to 1, a value of 0 disables it. Default value is 1.

fillcolor, c

Set the color used to fill the output area not covered by the rotated image. For the general syntax of
this option, check the (ffmpeg-utils)"Color" section in the ffmpeg-utils manual. If the special value
"none" is selected then no background is printed (useful for example if the background is never
shown).

Default value is "black".

The expressions for the angle and the output size can contain the following constants and functions:

n

sequential number of the input frame, starting from 0. It is always NAN before the first frame is
filtered.

t

time in seconds of the input frame, it is set to 0 when the filter is configured. It is always NAN before
the first frame is filtered.

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

in_w, iw
in_h, ih

the input video width and height

out_w, ow
out_h, oh

the output width and height, that is the size of the padded area as specified by the width and height
expressions

rotw(a)
roth(a)

the minimal width/height required for completely containing the input video rotated by a radians.

These are only available when computing the out_w and out_h expressions.

10.150.1 Examples# TOC

Rotate the input by PI/6 radians clockwise:

rotate=PI/6

Rotate the input by PI/6 radians counter-clockwise:

rotate=-PI/6

Rotate the input by 45 degrees clockwise:

rotate=45*PI/180

Apply a constant rotation with period T, starting from an angle of PI/3:

rotate=PI/3+2*PI*t/T

Make the input video rotation oscillating with a period of T seconds and an amplitude of A radians:

rotate=A*sin(2*PI/T*t)

Rotate the video, output size is chosen so that the whole rotating input video is always completely
contained in the output:

rotate=’2*PI*t:ow=hypot(iw,ih):oh=ow’

Rotate the video, reduce the output size so that no background is ever shown:

rotate=2*PI*t:ow=’min(iw,ih)/sqrt(2)’:oh=ow:c=none

10.150.2 Commands# TOC

The filter supports the following commands:

a, angle

Set the angle expression. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

10.151 sab# TOC

Apply Shape Adaptive Blur.

The filter accepts the following options:

luma_radius, lr

Set luma blur filter strength, must be a value in range 0.1-4.0, default value is 1.0. A greater value
will result in a more blurred image, and in slower processing.

luma_pre_filter_radius, lpfr

Set luma pre-filter radius, must be a value in the 0.1-2.0 range, default value is 1.0.

luma_strength, ls

Set luma maximum difference between pixels to still be considered, must be a value in the 0.1-100.0
range, default value is 1.0.

chroma_radius, cr

Set chroma blur filter strength, must be a value in range -0.9-4.0. A greater value will result in a more
blurred image, and in slower processing.

chroma_pre_filter_radius, cpfr

Set chroma pre-filter radius, must be a value in the -0.9-2.0 range.

chroma_strength, cs

Set chroma maximum difference between pixels to still be considered, must be a value in the
-0.9-100.0 range.

Each chroma option value, if not explicitly specified, is set to the corresponding luma option value.

10.152 scale# TOC

Scale (resize) the input video, using the libswscale library.

The scale filter forces the output display aspect ratio to be the same of the input, by changing the output
sample aspect ratio.

If the input image format is different from the format requested by the next filter, the scale filter will
convert the input to the requested format.

10.152.1 Options# TOC

The filter accepts the following options, or any of the options supported by the libswscale scaler.

See (ffmpeg-scaler)the ffmpeg-scaler manual for the complete list of scaler options.

width, w
height, h

Set the output video dimension expression. Default value is the input dimension.

If the width or w value is 0, the input width is used for the output. If the height or h value is 0, the
input height is used for the output.

If one and only one of the values is -n with n >= 1, the scale filter will use a value that maintains the
aspect ratio of the input image, calculated from the other specified dimension. After that it will, however,
make sure that the calculated dimension is divisible by n and adjust the value if necessary.

If both values are -n with n >= 1, the behavior will be identical to both values being set to 0 as
previously detailed.

See below for the list of accepted constants for use in the dimension expression.

eval

Specify when to evaluate width and height expression. It accepts the following values:

‘init’

Only evaluate expressions once during the filter initialization or when a command is processed.

‘frame’

Evaluate expressions for each incoming frame.

Default value is ‘init’.

interl

Set the interlacing mode. It accepts the following values:

‘1’

Force interlaced aware scaling.

‘0’

Do not apply interlaced scaling.

‘-1’

Select interlaced aware scaling depending on whether the source frames are flagged as interlaced
or not.

Default value is ‘0’.

flags

Set libswscale scaling flags. See (ffmpeg-scaler)the ffmpeg-scaler manual for the complete list of
values. If not explicitly specified the filter applies the default flags.

param0, param1

Set libswscale input parameters for scaling algorithms that need them. See (ffmpeg-scaler)the
ffmpeg-scaler manual for the complete documentation. If not explicitly specified the filter applies
empty parameters.

size, s

Set the video size. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in the
ffmpeg-utils manual.

in_color_matrix
out_color_matrix

Set in/output YCbCr color space type.

This allows the autodetected value to be overridden as well as allows forcing a specific value used for
the output and encoder.

If not specified, the color space type depends on the pixel format.

Possible values:

‘auto’

Choose automatically.

‘bt709’

Format conforming to International Telecommunication Union (ITU) Recommendation BT.709.

‘fcc’

Set color space conforming to the United States Federal Communications Commission (FCC)
Code of Federal Regulations (CFR) Title 47 (2003) 73.682 (a).

‘bt601’

Set color space conforming to:

ITU Radiocommunication Sector (ITU-R) Recommendation BT.601
ITU-R Rec. BT.470-6 (1998) Systems B, B1, and G
Society of Motion Picture and Television Engineers (SMPTE) ST 170:2004

‘smpte240m’

Set color space conforming to SMPTE ST 240:1999.

in_range
out_range

Set in/output YCbCr sample range.

This allows the autodetected value to be overridden as well as allows forcing a specific value used for
the output and encoder. If not specified, the range depends on the pixel format. Possible values:

‘auto/unknown’

Choose automatically.

‘jpeg/full/pc’

Set full range (0-255 in case of 8-bit luma).

‘mpeg/limited/tv’

Set "MPEG" range (16-235 in case of 8-bit luma).

force_original_aspect_ratio

Enable decreasing or increasing output video width or height if necessary to keep the original aspect
ratio. Possible values:

‘disable’

Scale the video as specified and disable this feature.

‘decrease’

The output video dimensions will automatically be decreased if needed.

‘increase’

The output video dimensions will automatically be increased if needed.

One useful instance of this option is that when you know a specific device’s maximum allowed
resolution, you can use this to limit the output video to that, while retaining the aspect ratio. For
example, device A allows 1280x720 playback, and your video is 1920x800. Using this option (set it
to decrease) and specifying 1280x720 to the command line makes the output 1280x533.

Please note that this is a different thing than specifying -1 for w or h, you still need to specify the
output resolution for this option to work.

The values of the w and h options are expressions containing the following constants:

in_w
in_h

The input width and height

iw
ih

These are the same as in_w and in_h.

out_w
out_h

The output (scaled) width and height

ow
oh

These are the same as out_w and out_h

a

The same as iw / ih

sar

input sample aspect ratio

dar

The input display aspect ratio. Calculated from (iw / ih) * sar.

hsub
vsub

horizontal and vertical input chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

ohsub
ovsub

horizontal and vertical output chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

10.152.2 Examples# TOC

Scale the input video to a size of 200x100

scale=w=200:h=100

This is equivalent to:

scale=200:100

or:

scale=200x100

Specify a size abbreviation for the output size:

scale=qcif

which can also be written as:

scale=size=qcif

Scale the input to 2x:

scale=w=2*iw:h=2*ih

The above is the same as:

scale=2*in_w:2*in_h

Scale the input to 2x with forced interlaced scaling:

scale=2*iw:2*ih:interl=1

Scale the input to half size:

scale=w=iw/2:h=ih/2

Increase the width, and set the height to the same size:

scale=3/2*iw:ow

Seek Greek harmony:

scale=iw:1/PHI*iw
scale=ih*PHI:ih

Increase the height, and set the width to 3/2 of the height:

scale=w=3/2*oh:h=3/5*ih

Increase the size, making the size a multiple of the chroma subsample values:

scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"

Increase the width to a maximum of 500 pixels, keeping the same aspect ratio as the input:

scale=w=’min(500\, iw*3/2):h=-1’

Make pixels square by combining scale and setsar:

scale=’trunc(ih*dar):ih’,setsar=1/1

Make pixels square by combining scale and setsar, making sure the resulting resolution is even
(required by some codecs):

scale=’trunc(ih*dar/2)*2:trunc(ih/2)*2’,setsar=1/1

10.152.3 Commands# TOC

This filter supports the following commands:

width, w
height, h

Set the output video dimension expression. The command accepts the same syntax of the
corresponding option.

If the specified expression is not valid, it is kept at its current value.

10.153 scale_npp# TOC

Use the NVIDIA Performance Primitives (libnpp) to perform scaling and/or pixel format conversion on
CUDA video frames. Setting the output width and height works in the same way as for the scale filter.

The following additional options are accepted:

format

The pixel format of the output CUDA frames. If set to the string "same" (the default), the input
format will be kept. Note that automatic format negotiation and conversion is not yet supported for
hardware frames

interp_algo

The interpolation algorithm used for resizing. One of the following:

nn

Nearest neighbour.

linear
cubic
cubic2p_bspline

2-parameter cubic (B=1, C=0)

cubic2p_catmullrom

2-parameter cubic (B=0, C=1/2)

cubic2p_b05c03

2-parameter cubic (B=1/2, C=3/10)

super

Supersampling

lanczos

10.154 scale2ref# TOC

Scale (resize) the input video, based on a reference video.

See the scale filter for available options, scale2ref supports the same but uses the reference video instead
of the main input as basis. scale2ref also supports the following additional constants for the w and h
options:

main_w
main_h

The main input video’s width and height

main_a

The same as main_w / main_h

main_sar

The main input video’s sample aspect ratio

main_dar, mdar

The main input video’s display aspect ratio. Calculated from (main_w / main_h) *
main_sar.

main_hsub
main_vsub

The main input video’s horizontal and vertical chroma subsample values. For example for the pixel
format "yuv422p" hsub is 2 and vsub is 1.

10.154.1 Examples# TOC

Scale a subtitle stream (b) to match the main video (a) in size before overlaying

’scale2ref[b][a];[a][b]overlay’

10.155 selectivecolor# TOC

Adjust cyan, magenta, yellow and black (CMYK) to certain ranges of colors (such as "reds", "yellows",
"greens", "cyans", ...). The adjustment range is defined by the "purity" of the color (that is, how saturated
it already is).

This filter is similar to the Adobe Photoshop Selective Color tool.

The filter accepts the following options:

correction_method

Select color correction method.

Available values are:

‘absolute’

Specified adjustments are applied "as-is" (added/subtracted to original pixel component value).

‘relative’

Specified adjustments are relative to the original component value.

Default is absolute.

reds

Adjustments for red pixels (pixels where the red component is the maximum)

yellows

Adjustments for yellow pixels (pixels where the blue component is the minimum)

greens

Adjustments for green pixels (pixels where the green component is the maximum)

cyans

Adjustments for cyan pixels (pixels where the red component is the minimum)

blues

Adjustments for blue pixels (pixels where the blue component is the maximum)

magentas

Adjustments for magenta pixels (pixels where the green component is the minimum)

whites

Adjustments for white pixels (pixels where all components are greater than 128)

neutrals

Adjustments for all pixels except pure black and pure white

blacks

Adjustments for black pixels (pixels where all components are lesser than 128)

psfile

Specify a Photoshop selective color file (.asv) to import the settings from.

All the adjustment settings (reds, yellows, ...) accept up to 4 space separated floating point adjustment
values in the [-1,1] range, respectively to adjust the amount of cyan, magenta, yellow and black for the
pixels of its range.

10.155.1 Examples# TOC

Increase cyan by 50% and reduce yellow by 33% in every green areas, and increase magenta by 27%
in blue areas:

selectivecolor=greens=.5 0 -.33 0:blues=0 .27

Use a Photoshop selective color preset:

selectivecolor=psfile=MySelectiveColorPresets/Misty.asv

10.156 separatefields# TOC

The separatefields takes a frame-based video input and splits each frame into its components fields,
producing a new half height clip with twice the frame rate and twice the frame count.

This filter use field-dominance information in frame to decide which of each pair of fields to place first in
the output. If it gets it wrong use setfield filter before separatefields filter.

10.157 setdar, setsar# TOC

The setdar filter sets the Display Aspect Ratio for the filter output video.

This is done by changing the specified Sample (aka Pixel) Aspect Ratio, according to the following
equation:

DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR

Keep in mind that the setdar filter does not modify the pixel dimensions of the video frame. Also, the
display aspect ratio set by this filter may be changed by later filters in the filterchain, e.g. in case of scaling
or if another "setdar" or a "setsar" filter is applied.

The setsar filter sets the Sample (aka Pixel) Aspect Ratio for the filter output video.

Note that as a consequence of the application of this filter, the output display aspect ratio will change
according to the equation above.

Keep in mind that the sample aspect ratio set by the setsar filter may be changed by later filters in the
filterchain, e.g. if another "setsar" or a "setdar" filter is applied.

It accepts the following parameters:

r, ratio, dar (setdar only), sar (setsar only)

Set the aspect ratio used by the filter.

The parameter can be a floating point number string, an expression, or a string of the form num:den,
where num and den are the numerator and denominator of the aspect ratio. If the parameter is not
specified, it is assumed the value "0". In case the form "num:den" is used, the : character should be
escaped.

max

Set the maximum integer value to use for expressing numerator and denominator when reducing the
expressed aspect ratio to a rational. Default value is 100.

The parameter sar is an expression containing the following constants:

E, PI, PHI

These are approximated values for the mathematical constants e (Euler’s number), pi (Greek pi), and
phi (the golden ratio).

w, h

The input width and height.

a

These are the same as w / h.

sar

The input sample aspect ratio.

dar

The input display aspect ratio. It is the same as (w / h) * sar.

hsub, vsub

Horizontal and vertical chroma subsample values. For example, for the pixel format "yuv422p" hsub
is 2 and vsub is 1.

10.157.1 Examples# TOC

To change the display aspect ratio to 16:9, specify one of the following:

setdar=dar=1.77777
setdar=dar=16/9

To change the sample aspect ratio to 10:11, specify:

setsar=sar=10/11

To set a display aspect ratio of 16:9, and specify a maximum integer value of 1000 in the aspect ratio
reduction, use the command:

setdar=ratio=16/9:max=1000

10.158 setfield# TOC

Force field for the output video frame.

The setfield filter marks the interlace type field for the output frames. It does not change the input
frame, but only sets the corresponding property, which affects how the frame is treated by following filters
(e.g. fieldorder or yadif).

The filter accepts the following options:

mode

Available values are:

‘auto’

Keep the same field property.

‘bff’

Mark the frame as bottom-field-first.

‘tff’

Mark the frame as top-field-first.

‘prog’

Mark the frame as progressive.

10.159 showinfo# TOC

Show a line containing various information for each input video frame. The input video is not modified.

The shown line contains a sequence of key/value pairs of the form key:value.

The following values are shown in the output:

n

The (sequential) number of the input frame, starting from 0.

pts

The Presentation TimeStamp of the input frame, expressed as a number of time base units. The time
base unit depends on the filter input pad.

pts_time

The Presentation TimeStamp of the input frame, expressed as a number of seconds.

pos

The position of the frame in the input stream, or -1 if this information is unavailable and/or
meaningless (for example in case of synthetic video).

fmt

The pixel format name.

sar

The sample aspect ratio of the input frame, expressed in the form num/den.

s

The size of the input frame. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual.

i

The type of interlaced mode ("P" for "progressive", "T" for top field first, "B" for bottom field first).

iskey

This is 1 if the frame is a key frame, 0 otherwise.

type

The picture type of the input frame ("I" for an I-frame, "P" for a P-frame, "B" for a B-frame, or "?"
for an unknown type). Also refer to the documentation of the AVPictureType enum and of the
av_get_picture_type_char function defined in libavutil/avutil.h.

checksum

The Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame.

plane_checksum

The Adler-32 checksum (printed in hexadecimal) of each plane of the input frame, expressed in the
form "[c0 c1 c2 c3]".

10.160 showpalette# TOC

Displays the 256 colors palette of each frame. This filter is only relevant for pal8 pixel format frames.

It accepts the following option:

s

Set the size of the box used to represent one palette color entry. Default is 30 (for a 30x30 pixel
box).

10.161 shuffleframes# TOC

Reorder and/or duplicate and/or drop video frames.

It accepts the following parameters:

mapping

Set the destination indexes of input frames. This is space or ’|’ separated list of indexes that maps
input frames to output frames. Number of indexes also sets maximal value that each index may have.
’-1’ index have special meaning and that is to drop frame.

The first frame has the index 0. The default is to keep the input unchanged.

10.161.1 Examples# TOC

Swap second and third frame of every three frames of the input:

ffmpeg -i INPUT -vf "shuffleframes=0 2 1" OUTPUT

Swap 10th and 1st frame of every ten frames of the input:

ffmpeg -i INPUT -vf "shuffleframes=9 1 2 3 4 5 6 7 8 0" OUTPUT

10.162 shuffleplanes# TOC

Reorder and/or duplicate video planes.

It accepts the following parameters:

map0

The index of the input plane to be used as the first output plane.

map1

The index of the input plane to be used as the second output plane.

map2

The index of the input plane to be used as the third output plane.

map3

The index of the input plane to be used as the fourth output plane.

The first plane has the index 0. The default is to keep the input unchanged.

10.162.1 Examples# TOC

Swap the second and third planes of the input:

ffmpeg -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT

10.163 signalstats# TOC

Evaluate various visual metrics that assist in determining issues associated with the digitization of analog
video media.

By default the filter will log these metadata values:

YMIN

Display the minimal Y value contained within the input frame. Expressed in range of [0-255].

YLOW

Display the Y value at the 10% percentile within the input frame. Expressed in range of [0-255].

YAVG

Display the average Y value within the input frame. Expressed in range of [0-255].

YHIGH

Display the Y value at the 90% percentile within the input frame. Expressed in range of [0-255].

YMAX

Display the maximum Y value contained within the input frame. Expressed in range of [0-255].

UMIN

Display the minimal U value contained within the input frame. Expressed in range of [0-255].

ULOW

Display the U value at the 10% percentile within the input frame. Expressed in range of [0-255].

UAVG

Display the average U value within the input frame. Expressed in range of [0-255].

UHIGH

Display the U value at the 90% percentile within the input frame. Expressed in range of [0-255].

UMAX

Display the maximum U value contained within the input frame. Expressed in range of [0-255].

VMIN

Display the minimal V value contained within the input frame. Expressed in range of [0-255].

VLOW

Display the V value at the 10% percentile within the input frame. Expressed in range of [0-255].

VAVG

Display the average V value within the input frame. Expressed in range of [0-255].

VHIGH

Display the V value at the 90% percentile within the input frame. Expressed in range of [0-255].

VMAX

Display the maximum V value contained within the input frame. Expressed in range of [0-255].

SATMIN

Display the minimal saturation value contained within the input frame. Expressed in range of
[0-~181.02].

SATLOW

Display the saturation value at the 10% percentile within the input frame. Expressed in range of
[0-~181.02].

SATAVG

Display the average saturation value within the input frame. Expressed in range of [0-~181.02].

SATHIGH

Display the saturation value at the 90% percentile within the input frame. Expressed in range of
[0-~181.02].

SATMAX

Display the maximum saturation value contained within the input frame. Expressed in range of
[0-~181.02].

HUEMED

Display the median value for hue within the input frame. Expressed in range of [0-360].

HUEAVG

Display the average value for hue within the input frame. Expressed in range of [0-360].

YDIF

Display the average of sample value difference between all values of the Y plane in the current frame
and corresponding values of the previous input frame. Expressed in range of [0-255].

UDIF

Display the average of sample value difference between all values of the U plane in the current frame
and corresponding values of the previous input frame. Expressed in range of [0-255].

VDIF

Display the average of sample value difference between all values of the V plane in the current frame
and corresponding values of the previous input frame. Expressed in range of [0-255].

YBITDEPTH

Display bit depth of Y plane in current frame. Expressed in range of [0-16].

UBITDEPTH

Display bit depth of U plane in current frame. Expressed in range of [0-16].

VBITDEPTH

Display bit depth of V plane in current frame. Expressed in range of [0-16].

The filter accepts the following options:

stat
out

stat specify an additional form of image analysis. out output video with the specified type of pixel
highlighted.

Both options accept the following values:

‘tout’

Identify temporal outliers pixels. A temporal outlier is a pixel unlike the neighboring pixels of
the same field. Examples of temporal outliers include the results of video dropouts, head clogs,
or tape tracking issues.

‘vrep’

Identify vertical line repetition. Vertical line repetition includes similar rows of pixels within a
frame. In born-digital video vertical line repetition is common, but this pattern is uncommon in
video digitized from an analog source. When it occurs in video that results from the digitization
of an analog source it can indicate concealment from a dropout compensator.

‘brng’

Identify pixels that fall outside of legal broadcast range.

color, c

Set the highlight color for the out option. The default color is yellow.

10.163.1 Examples# TOC

Output data of various video metrics:

ffprobe -f lavfi movie=example.mov,signalstats="stat=tout+vrep+brng" -show_frames

Output specific data about the minimum and maximum values of the Y plane per frame:

ffprobe -f lavfi movie=example.mov,signalstats -show_entries frame_tags=lavfi.signalstats.YMAX,lavfi.signalstats.YMIN

Playback video while highlighting pixels that are outside of broadcast range in red.

ffplay example.mov -vf signalstats="out=brng:color=red"

Playback video with signalstats metadata drawn over the frame.

ffplay example.mov -vf signalstats=stat=brng+vrep+tout,drawtext=fontfile=FreeSerif.ttf:textfile=signalstat_drawtext.txt

The contents of signalstat_drawtext.txt used in the command are:

time %{pts:hms}
Y (%{metadata:lavfi.signalstats.YMIN}-%{metadata:lavfi.signalstats.YMAX})
U (%{metadata:lavfi.signalstats.UMIN}-%{metadata:lavfi.signalstats.UMAX})
V (%{metadata:lavfi.signalstats.VMIN}-%{metadata:lavfi.signalstats.VMAX})
saturation maximum: %{metadata:lavfi.signalstats.SATMAX}

10.164 signature# TOC

Calculates the MPEG-7 Video Signature. The filter can handle more than one input. In this case the
matching between the inputs can be calculated additionally. The filter always passes through the first
input. The signature of each stream can be written into a file.

It accepts the following options:

detectmode

Enable or disable the matching process.

Available values are:

‘off’

Disable the calculation of a matching (default).

‘full’

Calculate the matching for the whole video and output whether the whole video matches or only
parts.

‘fast’

Calculate only until a matching is found or the video ends. Should be faster in some cases.

nb_inputs

Set the number of inputs. The option value must be a non negative integer. Default value is 1.

filename

Set the path to which the output is written. If there is more than one input, the path must be a
prototype, i.e. must contain %d or %0nd (where n is a positive integer), that will be replaced with the
input number. If no filename is specified, no output will be written. This is the default.

format

Choose the output format.

Available values are:

‘binary’

Use the specified binary representation (default).

‘xml’

Use the specified xml representation.

th_d

Set threshold to detect one word as similar. The option value must be an integer greater than zero.
The default value is 9000.

th_dc

Set threshold to detect all words as similar. The option value must be an integer greater than zero.
The default value is 60000.

th_xh

Set threshold to detect frames as similar. The option value must be an integer greater than zero. The
default value is 116.

th_di

Set the minimum length of a sequence in frames to recognize it as matching sequence. The option
value must be a non negative integer value. The default value is 0.

th_it

Set the minimum relation, that matching frames to all frames must have. The option value must be a
double value between 0 and 1. The default value is 0.5.

10.164.1 Examples# TOC

To calculate the signature of an input video and store it in signature.bin:

ffmpeg -i input.mkv -vf signature=filename=signature.bin -map 0:v -f null -

To detect whether two videos match and store the signatures in XML format in signature0.xml and
signature1.xml:

ffmpeg -i input1.mkv -i input2.mkv -filter_complex "[0:v][1:v] signature=nb_inputs=2:detectmode=full:format=xml:filename=signature%d.xml" -map :v -f null -

10.165 smartblur# TOC

Blur the input video without impacting the outlines.

It accepts the following options:

luma_radius, lr

Set the luma radius. The option value must be a float number in the range [0.1,5.0] that specifies the
variance of the gaussian filter used to blur the image (slower if larger). Default value is 1.0.

luma_strength, ls

Set the luma strength. The option value must be a float number in the range [-1.0,1.0] that configures
the blurring. A value included in [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
will sharpen the image. Default value is 1.0.

luma_threshold, lt

Set the luma threshold used as a coefficient to determine whether a pixel should be blurred or not.
The option value must be an integer in the range [-30,30]. A value of 0 will filter all the image, a
value included in [0,30] will filter flat areas and a value included in [-30,0] will filter edges. Default
value is 0.

chroma_radius, cr

Set the chroma radius. The option value must be a float number in the range [0.1,5.0] that specifies
the variance of the gaussian filter used to blur the image (slower if larger). Default value is
luma_radius.

chroma_strength, cs

Set the chroma strength. The option value must be a float number in the range [-1.0,1.0] that
configures the blurring. A value included in [0.0,1.0] will blur the image whereas a value included in
[-1.0,0.0] will sharpen the image. Default value is luma_strength.

chroma_threshold, ct

Set the chroma threshold used as a coefficient to determine whether a pixel should be blurred or not.
The option value must be an integer in the range [-30,30]. A value of 0 will filter all the image, a
value included in [0,30] will filter flat areas and a value included in [-30,0] will filter edges. Default
value is luma_threshold.

If a chroma option is not explicitly set, the corresponding luma value is set.

10.166 ssim# TOC

Obtain the SSIM (Structural SImilarity Metric) between two input videos.

This filter takes in input two input videos, the first input is considered the "main" source and is passed
unchanged to the output. The second input is used as a "reference" video for computing the SSIM.

Both video inputs must have the same resolution and pixel format for this filter to work correctly. Also it
assumes that both inputs have the same number of frames, which are compared one by one.

The filter stores the calculated SSIM of each frame.

The description of the accepted parameters follows.

stats_file, f

If specified the filter will use the named file to save the SSIM of each individual frame. When
filename equals "-" the data is sent to standard output.

The file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value for
each compared couple of frames.

A description of each shown parameter follows:

n

sequential number of the input frame, starting from 1

Y, U, V, R, G, B

SSIM of the compared frames for the component specified by the suffix.

All

SSIM of the compared frames for the whole frame.

dB

Same as above but in dB representation.

This filter also supports the framesync options.

For example:

movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
[main][ref] ssim="stats_file=stats.log" [out]

On this example the input file being processed is compared with the reference file ref_movie.mpg.
The SSIM of each individual frame is stored in stats.log.

Another example with both psnr and ssim at same time:

ffmpeg -i main.mpg -i ref.mpg -lavfi "ssim;[0:v][1:v]psnr" -f null -

10.167 stereo3d# TOC

Convert between different stereoscopic image formats.

The filters accept the following options:

in

Set stereoscopic image format of input.

Available values for input image formats are:

‘sbsl’

side by side parallel (left eye left, right eye right)

‘sbsr’

side by side crosseye (right eye left, left eye right)

‘sbs2l’

side by side parallel with half width resolution (left eye left, right eye right)

‘sbs2r’

side by side crosseye with half width resolution (right eye left, left eye right)

‘abl’

above-below (left eye above, right eye below)

‘abr’

above-below (right eye above, left eye below)

‘ab2l’

above-below with half height resolution (left eye above, right eye below)

‘ab2r’

above-below with half height resolution (right eye above, left eye below)

‘al’

alternating frames (left eye first, right eye second)

‘ar’

alternating frames (right eye first, left eye second)

‘irl’

interleaved rows (left eye has top row, right eye starts on next row)

‘irr’

interleaved rows (right eye has top row, left eye starts on next row)

‘icl’

interleaved columns, left eye first

‘icr’

interleaved columns, right eye first

Default value is ‘sbsl’.

out

Set stereoscopic image format of output.

‘sbsl’

side by side parallel (left eye left, right eye right)

‘sbsr’

side by side crosseye (right eye left, left eye right)

‘sbs2l’

side by side parallel with half width resolution (left eye left, right eye right)

‘sbs2r’

side by side crosseye with half width resolution (right eye left, left eye right)

‘abl’

above-below (left eye above, right eye below)

‘abr’

above-below (right eye above, left eye below)

‘ab2l’

above-below with half height resolution (left eye above, right eye below)

‘ab2r’

above-below with half height resolution (right eye above, left eye below)

‘al’

alternating frames (left eye first, right eye second)

‘ar’

alternating frames (right eye first, left eye second)

‘irl’

interleaved rows (left eye has top row, right eye starts on next row)

‘irr’

interleaved rows (right eye has top row, left eye starts on next row)

‘arbg’

anaglyph red/blue gray (red filter on left eye, blue filter on right eye)

‘argg’

anaglyph red/green gray (red filter on left eye, green filter on right eye)

‘arcg’

anaglyph red/cyan gray (red filter on left eye, cyan filter on right eye)

‘arch’

anaglyph red/cyan half colored (red filter on left eye, cyan filter on right eye)

‘arcc’

anaglyph red/cyan color (red filter on left eye, cyan filter on right eye)

‘arcd’

anaglyph red/cyan color optimized with the least squares projection of dubois (red filter on left
eye, cyan filter on right eye)

‘agmg’

anaglyph green/magenta gray (green filter on left eye, magenta filter on right eye)

‘agmh’

anaglyph green/magenta half colored (green filter on left eye, magenta filter on right eye)

‘agmc’

anaglyph green/magenta colored (green filter on left eye, magenta filter on right eye)

‘agmd’

anaglyph green/magenta color optimized with the least squares projection of dubois (green filter
on left eye, magenta filter on right eye)

‘aybg’

anaglyph yellow/blue gray (yellow filter on left eye, blue filter on right eye)

‘aybh’

anaglyph yellow/blue half colored (yellow filter on left eye, blue filter on right eye)

‘aybc’

anaglyph yellow/blue colored (yellow filter on left eye, blue filter on right eye)

‘aybd’

anaglyph yellow/blue color optimized with the least squares projection of dubois (yellow filter
on left eye, blue filter on right eye)

‘ml’

mono output (left eye only)

‘mr’

mono output (right eye only)

‘chl’

checkerboard, left eye first

‘chr’

checkerboard, right eye first

‘icl’

interleaved columns, left eye first

‘icr’

interleaved columns, right eye first

‘hdmi’

HDMI frame pack

Default value is ‘arcd’.

10.167.1 Examples# TOC

Convert input video from side by side parallel to anaglyph yellow/blue dubois:

stereo3d=sbsl:aybd

Convert input video from above below (left eye above, right eye below) to side by side crosseye.

stereo3d=abl:sbsr

10.168 streamselect, astreamselect# TOC

Select video or audio streams.

The filter accepts the following options:

inputs

Set number of inputs. Default is 2.

map

Set input indexes to remap to outputs.

10.168.1 Commands# TOC

The streamselect and astreamselect filter supports the following commands:

map

Set input indexes to remap to outputs.

10.168.2 Examples# TOC

Select first 5 seconds 1st stream and rest of time 2nd stream:

sendcmd=’5.0 streamselect map 1’,streamselect=inputs=2:map=0

Same as above, but for audio:

asendcmd=’5.0 astreamselect map 1’,astreamselect=inputs=2:map=0

10.169 sobel# TOC

Apply sobel operator to input video stream.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

scale

Set value which will be multiplied with filtered result.

delta

Set value which will be added to filtered result.

10.170 spp# TOC

Apply a simple postprocessing filter that compresses and decompresses the image at several (or - in the
case of quality level 6 - all) shifts and average the results.

The filter accepts the following options:

quality

Set quality. This option defines the number of levels for averaging. It accepts an integer in the range
0-6. If set to 0, the filter will have no effect. A value of 6 means the higher quality. For each
increment of that value the speed drops by a factor of approximately 2. Default value is 3.

qp

Force a constant quantization parameter. If not set, the filter will use the QP from the video stream (if
available).

mode

Set thresholding mode. Available modes are:

‘hard’

Set hard thresholding (default).

‘soft’

Set soft thresholding (better de-ringing effect, but likely blurrier).

use_bframe_qp

Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the
B-Frames have often larger QP. Default is 0 (not enabled).

10.171 sr# TOC

Scale the input by applying one of the super-resolution methods based on convolutional neural networks.

Training scripts as well as scripts for model generation are provided in the repository at
https://github.com/HighVoltageRocknRoll/sr.git.

The filter accepts the following options:

model

Specify which super-resolution model to use. This option accepts the following values:

https://github.com/HighVoltageRocknRoll/sr.git

‘srcnn’

Super-Resolution Convolutional Neural Network model. See https://arxiv.org/abs/1501.00092.

‘espcn’

Efficient Sub-Pixel Convolutional Neural Network model. See https://arxiv.org/abs/1609.05158.

Default value is ‘srcnn’.

dnn_backend

Specify which DNN backend to use for model loading and execution. This option accepts the
following values:

‘native’

Native implementation of DNN loading and execution.

‘tensorflow’

TensorFlow backend. To enable this backend you need to install the TensorFlow for C library
(see https://www.tensorflow.org/install/install_c) and configure FFmpeg with
--enable-libtensorflow

Default value is ‘native’.

scale_factor

Set scale factor for SRCNN model, for which custom model file was provided. Allowed values are 2,
3 and 4. Default value is 2. Scale factor is necessary for SRCNN model, because it accepts input
upscaled using bicubic upscaling with proper scale factor.

model_filename

Set path to model file specifying network architecture and its parameters. Note that different
backends use different file formats. TensorFlow backend can load files for both formats, while native
backend can load files for only its format.

10.172 subtitles# TOC

Draw subtitles on top of input video using the libass library.

To enable compilation of this filter you need to configure FFmpeg with --enable-libass. This filter
also requires a build with libavcodec and libavformat to convert the passed subtitles file to ASS
(Advanced Substation Alpha) subtitles format.

https://arxiv.org/abs/1501.00092
https://arxiv.org/abs/1609.05158
https://www.tensorflow.org/install/install_c

The filter accepts the following options:

filename, f

Set the filename of the subtitle file to read. It must be specified.

original_size

Specify the size of the original video, the video for which the ASS file was composed. For the syntax
of this option, check the (ffmpeg-utils)"Video size" section in the ffmpeg-utils manual. Due to a
misdesign in ASS aspect ratio arithmetic, this is necessary to correctly scale the fonts if the aspect
ratio has been changed.

fontsdir

Set a directory path containing fonts that can be used by the filter. These fonts will be used in
addition to whatever the font provider uses.

alpha

Process alpha channel, by default alpha channel is untouched.

charenc

Set subtitles input character encoding. subtitles filter only. Only useful if not UTF-8.

stream_index, si

Set subtitles stream index. subtitles filter only.

force_style

Override default style or script info parameters of the subtitles. It accepts a string containing ASS
style format KEY=VALUE couples separated by ",".

If the first key is not specified, it is assumed that the first value specifies the filename.

For example, to render the file sub.srt on top of the input video, use the command:

subtitles=sub.srt

which is equivalent to:

subtitles=filename=sub.srt

To render the default subtitles stream from file video.mkv, use:

subtitles=video.mkv

To render the second subtitles stream from that file, use:

subtitles=video.mkv:si=1

To make the subtitles stream from sub.srt appear in 80% transparent blue DejaVu Serif, use:

subtitles=sub.srt:force_style=’FontName=DejaVu Serif,PrimaryColour=&HCCFF0000’

10.173 super2xsai# TOC

Scale the input by 2x and smooth using the Super2xSaI (Scale and Interpolate) pixel art scaling algorithm.

Useful for enlarging pixel art images without reducing sharpness.

10.174 swaprect# TOC

Swap two rectangular objects in video.

This filter accepts the following options:

w

Set object width.

h

Set object height.

x1

Set 1st rect x coordinate.

y1

Set 1st rect y coordinate.

x2

Set 2nd rect x coordinate.

y2

Set 2nd rect y coordinate.

All expressions are evaluated once for each frame.

The all options are expressions containing the following constants:

w
h

The input width and height.

a

same as w / h

sar

input sample aspect ratio

dar

input display aspect ratio, it is the same as (w / h) * sar

n

The number of the input frame, starting from 0.

t

The timestamp expressed in seconds. It’s NAN if the input timestamp is unknown.

pos

the position in the file of the input frame, NAN if unknown

10.175 swapuv# TOC

Swap U & V plane.

10.176 telecine# TOC

Apply telecine process to the video.

This filter accepts the following options:

first_field
‘top, t’

top field first

‘bottom, b’

bottom field first The default value is top.

pattern

A string of numbers representing the pulldown pattern you wish to apply. The default value is 23.

Some typical patterns:

NTSC output (30i):
27.5p: 32222
24p: 23 (classic)
24p: 2332 (preferred)
20p: 33
18p: 334
16p: 3444

PAL output (25i):
27.5p: 12222
24p: 222222222223 ("Euro pulldown")
16.67p: 33
16p: 33333334

10.177 threshold# TOC

Apply threshold effect to video stream.

This filter needs four video streams to perform thresholding. First stream is stream we are filtering.
Second stream is holding threshold values, third stream is holding min values, and last, fourth stream is
holding max values.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

For example if first stream pixel’s component value is less then threshold value of pixel component from
2nd threshold stream, third stream value will picked, otherwise fourth stream pixel component value will
be picked.

Using color source filter one can perform various types of thresholding:

10.177.1 Examples# TOC

Binary threshold, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -f lavfi -i color=black -f lavfi -i color=white -lavfi threshold output.avi

Inverted binary threshold, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -f lavfi -i color=white -f lavfi -i color=black -lavfi threshold output.avi

Truncate binary threshold, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -i 320x240.avi -f lavfi -i color=gray -lavfi threshold output.avi

Threshold to zero, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -f lavfi -i color=white -i 320x240.avi -lavfi threshold output.avi

Inverted threshold to zero, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -i 320x240.avi -f lavfi -i color=white -lavfi threshold output.avi

10.178 thumbnail# TOC

Select the most representative frame in a given sequence of consecutive frames.

The filter accepts the following options:

n

Set the frames batch size to analyze; in a set of n frames, the filter will pick one of them, and then
handle the next batch of n frames until the end. Default is 100.

Since the filter keeps track of the whole frames sequence, a bigger n value will result in a higher memory
usage, so a high value is not recommended.

10.178.1 Examples# TOC

Extract one picture each 50 frames:

thumbnail=50

Complete example of a thumbnail creation with ffmpeg:

ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png

10.179 tile# TOC

Tile several successive frames together.

The filter accepts the following options:

layout

Set the grid size (i.e. the number of lines and columns). For the syntax of this option, check the
(ffmpeg-utils)"Video size" section in the ffmpeg-utils manual.

nb_frames

Set the maximum number of frames to render in the given area. It must be less than or equal to wxh.
The default value is 0, meaning all the area will be used.

margin

Set the outer border margin in pixels.

padding

Set the inner border thickness (i.e. the number of pixels between frames). For more advanced padding
options (such as having different values for the edges), refer to the pad video filter.

color

Specify the color of the unused area. For the syntax of this option, check the (ffmpeg-utils)"Color"
section in the ffmpeg-utils manual. The default value of color is "black".

overlap

Set the number of frames to overlap when tiling several successive frames together. The value must
be between 0 and nb_frames - 1.

init_padding

Set the number of frames to initially be empty before displaying first output frame. This controls how
soon will one get first output frame. The value must be between 0 and nb_frames - 1.

10.179.1 Examples# TOC

Produce 8x8 PNG tiles of all keyframes (-skip_frame nokey) in a movie:

ffmpeg -skip_frame nokey -i file.avi -vf ’scale=128:72,tile=8x8’ -an -vsync 0 keyframes%03d.png

The -vsync 0 is necessary to prevent ffmpeg from duplicating each output frame to
accommodate the originally detected frame rate.

Display 5 pictures in an area of 3x2 frames, with 7 pixels between them, and 2 pixels of initial
margin, using mixed flat and named options:

tile=3x2:nb_frames=5:padding=7:margin=2

10.180 tinterlace# TOC

Perform various types of temporal field interlacing.

Frames are counted starting from 1, so the first input frame is considered odd.

The filter accepts the following options:

mode

Specify the mode of the interlacing. This option can also be specified as a value alone. See below for
a list of values for this option.

Available values are:

‘merge, 0’

Move odd frames into the upper field, even into the lower field, generating a double height
frame at half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
11111 33333
22222 44444
11111 33333
22222 44444
11111 33333
22222 44444
11111 33333
22222 44444

‘drop_even, 1’

Only output odd frames, even frames are dropped, generating a frame with unchanged height at
half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
11111 33333
11111 33333
11111 33333
11111 33333

‘drop_odd, 2’

Only output even frames, odd frames are dropped, generating a frame with unchanged height at
half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
 22222 44444
 22222 44444
 22222 44444
 22222 44444

‘pad, 3’

Expand each frame to full height, but pad alternate lines with black, generating a frame with
double height at the same input frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
11111 33333
..... 22222 44444
11111 33333
..... 22222 44444
11111 33333
..... 22222 44444
11111 33333
..... 22222 44444

‘interleave_top, 4’

Interleave the upper field from odd frames with the lower field from even frames, generating a
frame with unchanged height at half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111<- 22222 33333<- 44444
11111 22222<- 33333 44444<-

11111<- 22222 33333<- 44444
11111 22222<- 33333 44444<-

Output:
11111 33333
22222 44444
11111 33333
22222 44444

‘interleave_bottom, 5’

Interleave the lower field from odd frames with the upper field from even frames, generating a
frame with unchanged height at half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222<- 33333 44444<-
11111<- 22222 33333<- 44444
11111 22222<- 33333 44444<-
11111<- 22222 33333<- 44444

Output:
22222 44444
11111 33333
22222 44444
11111 33333

‘interlacex2, 6’

Double frame rate with unchanged height. Frames are inserted each containing the second
temporal field from the previous input frame and the first temporal field from the next input
frame. This mode relies on the top_field_first flag. Useful for interlaced video displays with no
field synchronisation.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
 11111 22222 33333 44444
11111 22222 33333 44444
 11111 22222 33333 44444

Output:
11111 22222 22222 33333 33333 44444 44444
 11111 11111 22222 22222 33333 33333 44444
11111 22222 22222 33333 33333 44444 44444
 11111 11111 22222 22222 33333 33333 44444

‘mergex2, 7’

Move odd frames into the upper field, even into the lower field, generating a double height
frame at same frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
11111 33333 33333 55555
22222 22222 44444 44444
11111 33333 33333 55555
22222 22222 44444 44444
11111 33333 33333 55555
22222 22222 44444 44444
11111 33333 33333 55555
22222 22222 44444 44444

Numeric values are deprecated but are accepted for backward compatibility reasons.

Default mode is merge.

flags

Specify flags influencing the filter process.

Available value for flags is:

low_pass_filter, vlfp

Enable linear vertical low-pass filtering in the filter. Vertical low-pass filtering is required when
creating an interlaced destination from a progressive source which contains high-frequency
vertical detail. Filtering will reduce interlace ’twitter’ and Moire patterning.

complex_filter, cvlfp

Enable complex vertical low-pass filtering. This will slightly less reduce interlace ’twitter’ and
Moire patterning but better retain detail and subjective sharpness impression.

Vertical low-pass filtering can only be enabled for mode interleave_top and interleave_bottom.

10.181 tmix# TOC

Mix successive video frames.

A description of the accepted options follows.

frames

The number of successive frames to mix. If unspecified, it defaults to 3.

weights

Specify weight of each input video frame. Each weight is separated by space. If number of weights is
smaller than number of frames last specified weight will be used for all remaining unset weights.

scale

Specify scale, if it is set it will be multiplied with sum of each weight multiplied with pixel values to
give final destination pixel value. By default scale is auto scaled to sum of weights.

10.181.1 Examples# TOC

Average 7 successive frames:

tmix=frames=7:weights="1 1 1 1 1 1 1"

Apply simple temporal convolution:

tmix=frames=3:weights="-1 3 -1"

Similar as above but only showing temporal differences:

tmix=frames=3:weights="-1 2 -1":scale=1

10.182 tonemap# TOC

Tone map colors from different dynamic ranges.

This filter expects data in single precision floating point, as it needs to operate on (and can output)
out-of-range values. Another filter, such as zscale, is needed to convert the resulting frame to a usable
format.

The tonemapping algorithms implemented only work on linear light, so input data should be linearized
beforehand (and possibly correctly tagged).

ffmpeg -i INPUT -vf zscale=transfer=linear,tonemap=clip,zscale=transfer=bt709,format=yuv420p OUTPUT

10.182.1 Options# TOC

The filter accepts the following options.

tonemap

Set the tone map algorithm to use.

Possible values are:

none

Do not apply any tone map, only desaturate overbright pixels.

clip

Hard-clip any out-of-range values. Use it for perfect color accuracy for in-range values, while
distorting out-of-range values.

linear

Stretch the entire reference gamut to a linear multiple of the display.

gamma

Fit a logarithmic transfer between the tone curves.

reinhard

Preserve overall image brightness with a simple curve, using nonlinear contrast, which results in
flattening details and degrading color accuracy.

hable

Preserve both dark and bright details better than reinhard, at the cost of slightly darkening
everything. Use it when detail preservation is more important than color and brightness
accuracy.

mobius

Smoothly map out-of-range values, while retaining contrast and colors for in-range material as
much as possible. Use it when color accuracy is more important than detail preservation.

Default is none.

param

Tune the tone mapping algorithm.

This affects the following algorithms:

none

Ignored.

linear

Specifies the scale factor to use while stretching. Default to 1.0.

gamma

Specifies the exponent of the function. Default to 1.8.

clip

Specify an extra linear coefficient to multiply into the signal before clipping. Default to 1.0.

reinhard

Specify the local contrast coefficient at the display peak. Default to 0.5, which means that
in-gamut values will be about half as bright as when clipping.

hable

Ignored.

mobius

Specify the transition point from linear to mobius transform. Every value below this point is
guaranteed to be mapped 1:1. The higher the value, the more accurate the result will be, at the
cost of losing bright details. Default to 0.3, which due to the steep initial slope still preserves
in-range colors fairly accurately.

desat

Apply desaturation for highlights that exceed this level of brightness. The higher the parameter, the
more color information will be preserved. This setting helps prevent unnaturally blown-out colors for
super-highlights, by (smoothly) turning into white instead. This makes images feel more natural, at
the cost of reducing information about out-of-range colors.

The default of 2.0 is somewhat conservative and will mostly just apply to skies or directly sunlit
surfaces. A setting of 0.0 disables this option.

This option works only if the input frame has a supported color tag.

peak

Override signal/nominal/reference peak with this value. Useful when the embedded peak information
in display metadata is not reliable or when tone mapping from a lower range to a higher range.

10.183 transpose# TOC

Transpose rows with columns in the input video and optionally flip it.

It accepts the following parameters:

dir

Specify the transposition direction.

Can assume the following values:

‘0, 4, cclock_flip’

Rotate by 90 degrees counterclockwise and vertically flip (default), that is:

L.R L.l
. . -> . .
l.r R.r

‘1, 5, clock’

Rotate by 90 degrees clockwise, that is:

L.R l.L
. . -> . .
l.r r.R

‘2, 6, cclock’

Rotate by 90 degrees counterclockwise, that is:

L.R R.r
. . -> . .
l.r L.l

‘3, 7, clock_flip’

Rotate by 90 degrees clockwise and vertically flip, that is:

L.R r.R
. . -> . .
l.r l.L

For values between 4-7, the transposition is only done if the input video geometry is portrait and not
landscape. These values are deprecated, the passthrough option should be used instead.

Numerical values are deprecated, and should be dropped in favor of symbolic constants.

passthrough

Do not apply the transposition if the input geometry matches the one specified by the specified value.
It accepts the following values:

‘none’

Always apply transposition.

‘portrait’

Preserve portrait geometry (when height >= width).

‘landscape’

Preserve landscape geometry (when width >= height).

Default value is none.

For example to rotate by 90 degrees clockwise and preserve portrait layout:

transpose=dir=1:passthrough=portrait

The command above can also be specified as:

transpose=1:portrait

10.184 trim# TOC

Trim the input so that the output contains one continuous subpart of the input.

It accepts the following parameters:

start

Specify the time of the start of the kept section, i.e. the frame with the timestamp start will be the first
frame in the output.

end

Specify the time of the first frame that will be dropped, i.e. the frame immediately preceding the one
with the timestamp end will be the last frame in the output.

start_pts

This is the same as start, except this option sets the start timestamp in timebase units instead of
seconds.

end_pts

This is the same as end, except this option sets the end timestamp in timebase units instead of
seconds.

duration

The maximum duration of the output in seconds.

start_frame

The number of the first frame that should be passed to the output.

end_frame

The number of the first frame that should be dropped.

start, end, and duration are expressed as time duration specifications; see (ffmpeg-utils)the Time
duration section in the ffmpeg-utils(1) manual for the accepted syntax.

Note that the first two sets of the start/end options and the duration option look at the frame timestamp,
while the _frame variants simply count the frames that pass through the filter. Also note that this filter
does not modify the timestamps. If you wish for the output timestamps to start at zero, insert a setpts filter
after the trim filter.

If multiple start or end options are set, this filter tries to be greedy and keep all the frames that match at
least one of the specified constraints. To keep only the part that matches all the constraints at once, chain
multiple trim filters.

The defaults are such that all the input is kept. So it is possible to set e.g. just the end values to keep
everything before the specified time.

Examples:

Drop everything except the second minute of input:

ffmpeg -i INPUT -vf trim=60:120

Keep only the first second:

ffmpeg -i INPUT -vf trim=duration=1

10.185 unpremultiply# TOC

Apply alpha unpremultiply effect to input video stream using first plane of second stream as alpha.

Both streams must have same dimensions and same pixel format.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

If the format has 1 or 2 components, then luma is bit 0. If the format has 3 or 4 components: for RGB
formats bit 0 is green, bit 1 is blue and bit 2 is red; for YUV formats bit 0 is luma, bit 1 is chroma-U
and bit 2 is chroma-V. If present, the alpha channel is always the last bit.

inplace

Do not require 2nd input for processing, instead use alpha plane from input stream.

10.186 unsharp# TOC

Sharpen or blur the input video.

It accepts the following parameters:

luma_msize_x, lx

Set the luma matrix horizontal size. It must be an odd integer between 3 and 23. The default value is
5.

luma_msize_y, ly

Set the luma matrix vertical size. It must be an odd integer between 3 and 23. The default value is 5.

luma_amount, la

Set the luma effect strength. It must be a floating point number, reasonable values lay between -1.5
and 1.5.

Negative values will blur the input video, while positive values will sharpen it, a value of zero will
disable the effect.

Default value is 1.0.

chroma_msize_x, cx

Set the chroma matrix horizontal size. It must be an odd integer between 3 and 23. The default value
is 5.

chroma_msize_y, cy

Set the chroma matrix vertical size. It must be an odd integer between 3 and 23. The default value is
5.

chroma_amount, ca

Set the chroma effect strength. It must be a floating point number, reasonable values lay between -1.5
and 1.5.

Negative values will blur the input video, while positive values will sharpen it, a value of zero will
disable the effect.

Default value is 0.0.

All parameters are optional and default to the equivalent of the string ’5:5:1.0:5:5:0.0’.

10.186.1 Examples# TOC

Apply strong luma sharpen effect:

unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5

Apply a strong blur of both luma and chroma parameters:

unsharp=7:7:-2:7:7:-2

10.187 uspp# TOC

Apply ultra slow/simple postprocessing filter that compresses and decompresses the image at several (or -
in the case of quality level 8 - all) shifts and average the results.

The way this differs from the behavior of spp is that uspp actually encodes & decodes each case with
libavcodec Snow, whereas spp uses a simplified intra only 8x8 DCT similar to MJPEG.

The filter accepts the following options:

quality

Set quality. This option defines the number of levels for averaging. It accepts an integer in the range
0-8. If set to 0, the filter will have no effect. A value of 8 means the higher quality. For each
increment of that value the speed drops by a factor of approximately 2. Default value is 3.

qp

Force a constant quantization parameter. If not set, the filter will use the QP from the video stream (if
available).

10.188 vaguedenoiser# TOC

Apply a wavelet based denoiser.

It transforms each frame from the video input into the wavelet domain, using
Cohen-Daubechies-Feauveau 9/7. Then it applies some filtering to the obtained coefficients. It does an
inverse wavelet transform after. Due to wavelet properties, it should give a nice smoothed result, and
reduced noise, without blurring picture features.

This filter accepts the following options:

threshold

The filtering strength. The higher, the more filtered the video will be. Hard thresholding can use a
higher threshold than soft thresholding before the video looks overfiltered. Default value is 2.

method

The filtering method the filter will use.

It accepts the following values:

‘hard’

All values under the threshold will be zeroed.

‘soft’

All values under the threshold will be zeroed. All values above will be reduced by the threshold.

‘garrote’

Scales or nullifies coefficients - intermediary between (more) soft and (less) hard thresholding.

Default is garrote.

nsteps

Number of times, the wavelet will decompose the picture. Picture can’t be decomposed beyond a
particular point (typically, 8 for a 640x480 frame - as 2^9 = 512 > 480). Valid values are integers
between 1 and 32. Default value is 6.

percent

Partial of full denoising (limited coefficients shrinking), from 0 to 100. Default value is 85.

planes

A list of the planes to process. By default all planes are processed.

10.189 vectorscope# TOC

Display 2 color component values in the two dimensional graph (which is called a vectorscope).

This filter accepts the following options:

mode, m

Set vectorscope mode.

It accepts the following values:

‘gray’

Gray values are displayed on graph, higher brightness means more pixels have same component
color value on location in graph. This is the default mode.

‘color’

Gray values are displayed on graph. Surrounding pixels values which are not present in video
frame are drawn in gradient of 2 color components which are set by option x and y. The 3rd
color component is static.

‘color2’

Actual color components values present in video frame are displayed on graph.

‘color3’

Similar as color2 but higher frequency of same values x and y on graph increases value of
another color component, which is luminance by default values of x and y.

‘color4’

Actual colors present in video frame are displayed on graph. If two different colors map to same
position on graph then color with higher value of component not present in graph is picked.

‘color5’

Gray values are displayed on graph. Similar to color but with 3rd color component picked
from radial gradient.

x

Set which color component will be represented on X-axis. Default is 1.

y

Set which color component will be represented on Y-axis. Default is 2.

intensity, i

Set intensity, used by modes: gray, color, color3 and color5 for increasing brightness of color
component which represents frequency of (X, Y) location in graph.

envelope, e
‘none’

No envelope, this is default.

‘instant’

Instant envelope, even darkest single pixel will be clearly highlighted.

‘peak’

Hold maximum and minimum values presented in graph over time. This way you can still spot
out of range values without constantly looking at vectorscope.

‘peak+instant’

Peak and instant envelope combined together.

graticule, g

Set what kind of graticule to draw.

‘none’
‘green’
‘color’

opacity, o

Set graticule opacity.

flags, f

Set graticule flags.

‘white’

Draw graticule for white point.

‘black’

Draw graticule for black point.

‘name’

Draw color points short names.

bgopacity, b

Set background opacity.

lthreshold, l

Set low threshold for color component not represented on X or Y axis. Values lower than this value
will be ignored. Default is 0. Note this value is multiplied with actual max possible value one pixel
component can have. So for 8-bit input and low threshold value of 0.1 actual threshold is 0.1 * 255 =
25.

hthreshold, h

Set high threshold for color component not represented on X or Y axis. Values higher than this value
will be ignored. Default is 1. Note this value is multiplied with actual max possible value one pixel
component can have. So for 8-bit input and high threshold value of 0.9 actual threshold is 0.9 * 255 =
230.

colorspace, c

Set what kind of colorspace to use when drawing graticule.

‘auto’
‘601’
‘709’

Default is auto.

10.190 vidstabdetect# TOC

Analyze video stabilization/deshaking. Perform pass 1 of 2, see vidstabtransform for pass 2.

This filter generates a file with relative translation and rotation transform information about subsequent
frames, which is then used by the vidstabtransform filter.

To enable compilation of this filter you need to configure FFmpeg with --enable-libvidstab.

This filter accepts the following options:

result

Set the path to the file used to write the transforms information. Default value is
transforms.trf.

shakiness

Set how shaky the video is and how quick the camera is. It accepts an integer in the range 1-10, a
value of 1 means little shakiness, a value of 10 means strong shakiness. Default value is 5.

accuracy

Set the accuracy of the detection process. It must be a value in the range 1-15. A value of 1 means
low accuracy, a value of 15 means high accuracy. Default value is 15.

stepsize

Set stepsize of the search process. The region around minimum is scanned with 1 pixel resolution.
Default value is 6.

mincontrast

Set minimum contrast. Below this value a local measurement field is discarded. Must be a floating
point value in the range 0-1. Default value is 0.3.

tripod

Set reference frame number for tripod mode.

If enabled, the motion of the frames is compared to a reference frame in the filtered stream, identified
by the specified number. The idea is to compensate all movements in a more-or-less static scene and
keep the camera view absolutely still.

If set to 0, it is disabled. The frames are counted starting from 1.

show

Show fields and transforms in the resulting frames. It accepts an integer in the range 0-2. Default
value is 0, which disables any visualization.

10.190.1 Examples# TOC

Use default values:

vidstabdetect

Analyze strongly shaky movie and put the results in file mytransforms.trf:

vidstabdetect=shakiness=10:accuracy=15:result="mytransforms.trf"

Visualize the result of internal transformations in the resulting video:

vidstabdetect=show=1

Analyze a video with medium shakiness using ffmpeg:

ffmpeg -i input -vf vidstabdetect=shakiness=5:show=1 dummy.avi

10.191 vidstabtransform# TOC

Video stabilization/deshaking: pass 2 of 2, see vidstabdetect for pass 1.

Read a file with transform information for each frame and apply/compensate them. Together with the
vidstabdetect filter this can be used to deshake videos. See also http://public.hronopik.de/vid.stab. It is
important to also use the unsharp filter, see below.

To enable compilation of this filter you need to configure FFmpeg with --enable-libvidstab.

10.191.1 Options# TOC

input

Set path to the file used to read the transforms. Default value is transforms.trf.

smoothing

Set the number of frames (value*2 + 1) used for lowpass filtering the camera movements. Default
value is 10.

For example a number of 10 means that 21 frames are used (10 in the past and 10 in the future) to
smoothen the motion in the video. A larger value leads to a smoother video, but limits the
acceleration of the camera (pan/tilt movements). 0 is a special case where a static camera is
simulated.

optalgo

Set the camera path optimization algorithm.

Accepted values are:

‘gauss’

gaussian kernel low-pass filter on camera motion (default)

‘avg’

averaging on transformations

maxshift

Set maximal number of pixels to translate frames. Default value is -1, meaning no limit.

maxangle

http://public.hronopik.de/vid.stab

Set maximal angle in radians (degree*PI/180) to rotate frames. Default value is -1, meaning no limit.

crop

Specify how to deal with borders that may be visible due to movement compensation.

Available values are:

‘keep’

keep image information from previous frame (default)

‘black’

fill the border black

invert

Invert transforms if set to 1. Default value is 0.

relative

Consider transforms as relative to previous frame if set to 1, absolute if set to 0. Default value is 0.

zoom

Set percentage to zoom. A positive value will result in a zoom-in effect, a negative value in a
zoom-out effect. Default value is 0 (no zoom).

optzoom

Set optimal zooming to avoid borders.

Accepted values are:

‘0’

disabled

‘1’

optimal static zoom value is determined (only very strong movements will lead to visible
borders) (default)

‘2’

optimal adaptive zoom value is determined (no borders will be visible), see zoomspeed

Note that the value given at zoom is added to the one calculated here.

zoomspeed

Set percent to zoom maximally each frame (enabled when optzoom is set to 2). Range is from 0 to
5, default value is 0.25.

interpol

Specify type of interpolation.

Available values are:

‘no’

no interpolation

‘linear’

linear only horizontal

‘bilinear’

linear in both directions (default)

‘bicubic’

cubic in both directions (slow)

tripod

Enable virtual tripod mode if set to 1, which is equivalent to relative=0:smoothing=0.
Default value is 0.

Use also tripod option of vidstabdetect.

debug

Increase log verbosity if set to 1. Also the detected global motions are written to the temporary file
global_motions.trf. Default value is 0.

10.191.2 Examples# TOC

Use ffmpeg for a typical stabilization with default values:

ffmpeg -i inp.mpeg -vf vidstabtransform,unsharp=5:5:0.8:3:3:0.4 inp_stabilized.mpeg

Note the use of the unsharp filter which is always recommended.

Zoom in a bit more and load transform data from a given file:

vidstabtransform=zoom=5:input="mytransforms.trf"

Smoothen the video even more:

vidstabtransform=smoothing=30

10.192 vflip# TOC

Flip the input video vertically.

For example, to vertically flip a video with ffmpeg:

ffmpeg -i in.avi -vf "vflip" out.avi

10.193 vfrdet# TOC

Detect variable frame rate video.

This filter tries to detect if the input is variable or constant frame rate.

At end it will output number of frames detected as having variable delta pts, and ones with constant delta
pts. If there was frames with variable delta, than it will also show min and max delta encountered.

10.194 vignette# TOC

Make or reverse a natural vignetting effect.

The filter accepts the following options:

angle, a

Set lens angle expression as a number of radians.

The value is clipped in the [0,PI/2] range.

Default value: "PI/5"

x0
y0

Set center coordinates expressions. Respectively "w/2" and "h/2" by default.

mode

Set forward/backward mode.

Available modes are:

‘forward’

The larger the distance from the central point, the darker the image becomes.

‘backward’

The larger the distance from the central point, the brighter the image becomes. This can be used
to reverse a vignette effect, though there is no automatic detection to extract the lens angle and
other settings (yet). It can also be used to create a burning effect.

Default value is ‘forward’.

eval

Set evaluation mode for the expressions (angle, x0, y0).

It accepts the following values:

‘init’

Evaluate expressions only once during the filter initialization.

‘frame’

Evaluate expressions for each incoming frame. This is way slower than the ‘init’ mode since
it requires all the scalers to be re-computed, but it allows advanced dynamic expressions.

Default value is ‘init’.

dither

Set dithering to reduce the circular banding effects. Default is 1 (enabled).

aspect

Set vignette aspect. This setting allows one to adjust the shape of the vignette. Setting this value to
the SAR of the input will make a rectangular vignetting following the dimensions of the video.

Default is 1/1.

10.194.1 Expressions# TOC

The alpha, x0 and y0 expressions can contain the following parameters.

w
h

input width and height

n

the number of input frame, starting from 0

pts

the PTS (Presentation TimeStamp) time of the filtered video frame, expressed in TB units, NAN if
undefined

r

frame rate of the input video, NAN if the input frame rate is unknown

t

the PTS (Presentation TimeStamp) of the filtered video frame, expressed in seconds, NAN if
undefined

tb

time base of the input video

10.194.2 Examples# TOC

Apply simple strong vignetting effect:

vignette=PI/4

Make a flickering vignetting:

vignette=’PI/4+random(1)*PI/50’:eval=frame

10.195 vmafmotion# TOC

Obtain the average vmaf motion score of a video. It is one of the component filters of VMAF.

The obtained average motion score is printed through the logging system.

In the below example the input file ref.mpg is being processed and score is computed.

ffmpeg -i ref.mpg -lavfi vmafmotion -f null -

10.196 vstack# TOC

Stack input videos vertically.

All streams must be of same pixel format and of same width.

Note that this filter is faster than using overlay and pad filter to create same output.

The filter accept the following option:

inputs

Set number of input streams. Default is 2.

shortest

If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

10.197 w3fdif# TOC

Deinterlace the input video ("w3fdif" stands for "Weston 3 Field Deinterlacing Filter").

Based on the process described by Martin Weston for BBC R&D, and implemented based on the
de-interlace algorithm written by Jim Easterbrook for BBC R&D, the Weston 3 field deinterlacing filter
uses filter coefficients calculated by BBC R&D.

There are two sets of filter coefficients, so called "simple": and "complex". Which set of filter coefficients
is used can be set by passing an optional parameter:

filter

Set the interlacing filter coefficients. Accepts one of the following values:

‘simple’

Simple filter coefficient set.

‘complex’

More-complex filter coefficient set.

Default value is ‘complex’.

deint

Specify which frames to deinterlace. Accept one of the following values:

‘all’

Deinterlace all frames,

‘interlaced’

Only deinterlace frames marked as interlaced.

Default value is ‘all’.

10.198 waveform# TOC

Video waveform monitor.

The waveform monitor plots color component intensity. By default luminance only. Each column of the
waveform corresponds to a column of pixels in the source video.

It accepts the following options:

mode, m

Can be either row, or column. Default is column. In row mode, the graph on the left side
represents color component value 0 and the right side represents value = 255. In column mode, the
top side represents color component value = 0 and bottom side represents value = 255.

intensity, i

Set intensity. Smaller values are useful to find out how many values of the same luminance are
distributed across input rows/columns. Default value is 0.04. Allowed range is [0, 1].

mirror, r

Set mirroring mode. 0 means unmirrored, 1 means mirrored. In mirrored mode, higher values will be
represented on the left side for row mode and at the top for column mode. Default is 1 (mirrored).

display, d

Set display mode. It accepts the following values:

‘overlay’

Presents information identical to that in the parade, except that the graphs representing color
components are superimposed directly over one another.

This display mode makes it easier to spot relative differences or similarities in overlapping areas
of the color components that are supposed to be identical, such as neutral whites, grays, or
blacks.

‘stack’

Display separate graph for the color components side by side in row mode or one below the
other in column mode.

‘parade’

Display separate graph for the color components side by side in column mode or one below the
other in row mode.

Using this display mode makes it easy to spot color casts in the highlights and shadows of an
image, by comparing the contours of the top and the bottom graphs of each waveform. Since
whites, grays, and blacks are characterized by exactly equal amounts of red, green, and blue,
neutral areas of the picture should display three waveforms of roughly equal width/height. If not,
the correction is easy to perform by making level adjustments the three waveforms.

Default is stack.

components, c

Set which color components to display. Default is 1, which means only luminance or red color
component if input is in RGB colorspace. If is set for example to 7 it will display all 3 (if) available
color components.

envelope, e
‘none’

No envelope, this is default.

‘instant’

Instant envelope, minimum and maximum values presented in graph will be easily visible even
with small step value.

‘peak’

Hold minimum and maximum values presented in graph across time. This way you can still spot
out of range values without constantly looking at waveforms.

‘peak+instant’

Peak and instant envelope combined together.

filter, f
‘lowpass’

No filtering, this is default.

‘flat’

Luma and chroma combined together.

‘aflat’

Similar as above, but shows difference between blue and red chroma.

‘xflat’

Similar as above, but use different colors.

‘chroma’

Displays only chroma.

‘color’

Displays actual color value on waveform.

‘acolor’

Similar as above, but with luma showing frequency of chroma values.

graticule, g

Set which graticule to display.

‘none’

Do not display graticule.

‘green’

Display green graticule showing legal broadcast ranges.

‘orange’

Display orange graticule showing legal broadcast ranges.

opacity, o

Set graticule opacity.

flags, fl

Set graticule flags.

‘numbers’

Draw numbers above lines. By default enabled.

‘dots’

Draw dots instead of lines.

scale, s

Set scale used for displaying graticule.

‘digital’
‘millivolts’
‘ire’

Default is digital.

bgopacity, b

Set background opacity.

10.199 weave, doubleweave# TOC

The weave takes a field-based video input and join each two sequential fields into single frame,
producing a new double height clip with half the frame rate and half the frame count.

The doubleweave works same as weave but without halving frame rate and frame count.

It accepts the following option:

first_field

Set first field. Available values are:

‘top, t’

Set the frame as top-field-first.

‘bottom, b’

Set the frame as bottom-field-first.

10.199.1 Examples# TOC

Interlace video using select and separatefields filter:

separatefields,select=eq(mod(n,4),0)+eq(mod(n,4),3),weave

10.200 xbr# TOC

Apply the xBR high-quality magnification filter which is designed for pixel art. It follows a set of
edge-detection rules, see https://forums.libretro.com/t/xbr-algorithm-tutorial/123.

https://forums.libretro.com/t/xbr-algorithm-tutorial/123

It accepts the following option:

n

Set the scaling dimension: 2 for 2xBR, 3 for 3xBR and 4 for 4xBR. Default is 3.

10.201 yadif# TOC

Deinterlace the input video ("yadif" means "yet another deinterlacing filter").

It accepts the following parameters:

mode

The interlacing mode to adopt. It accepts one of the following values:

0, send_frame

Output one frame for each frame.

1, send_field

Output one frame for each field.

2, send_frame_nospatial

Like send_frame, but it skips the spatial interlacing check.

3, send_field_nospatial

Like send_field, but it skips the spatial interlacing check.

The default value is send_frame.

parity

The picture field parity assumed for the input interlaced video. It accepts one of the following values:

0, tff

Assume the top field is first.

1, bff

Assume the bottom field is first.

-1, auto

Enable automatic detection of field parity.

The default value is auto. If the interlacing is unknown or the decoder does not export this
information, top field first will be assumed.

deint

Specify which frames to deinterlace. Accept one of the following values:

0, all

Deinterlace all frames.

1, interlaced

Only deinterlace frames marked as interlaced.

The default value is all.

10.202 zoompan# TOC

Apply Zoom & Pan effect.

This filter accepts the following options:

zoom, z

Set the zoom expression. Default is 1.

x
y

Set the x and y expression. Default is 0.

d

Set the duration expression in number of frames. This sets for how many number of frames effect
will last for single input image.

s

Set the output image size, default is ’hd720’.

fps

Set the output frame rate, default is ’25’.

Each expression can contain the following constants:

in_w, iw

Input width.

in_h, ih

Input height.

out_w, ow

Output width.

out_h, oh

Output height.

in

Input frame count.

on

Output frame count.

x
y

Last calculated ’x’ and ’y’ position from ’x’ and ’y’ expression for current input frame.

px
py

’x’ and ’y’ of last output frame of previous input frame or 0 when there was not yet such frame (first
input frame).

zoom

Last calculated zoom from ’z’ expression for current input frame.

pzoom

Last calculated zoom of last output frame of previous input frame.

duration

Number of output frames for current input frame. Calculated from ’d’ expression for each input
frame.

pduration

number of output frames created for previous input frame

a

Rational number: input width / input height

sar

sample aspect ratio

dar

display aspect ratio

10.202.1 Examples# TOC

Zoom-in up to 1.5 and pan at same time to some spot near center of picture:

zoompan=z=’min(zoom+0.0015,1.5)’:d=700:x=’if(gte(zoom,1.5),x,x+1/a)’:y=’if(gte(zoom,1.5),y,y+1)’:s=640x360

Zoom-in up to 1.5 and pan always at center of picture:

zoompan=z=’min(zoom+0.0015,1.5)’:d=700:x=’iw/2-(iw/zoom/2)’:y=’ih/2-(ih/zoom/2)’

Same as above but without pausing:

zoompan=z=’min(max(zoom,pzoom)+0.0015,1.5)’:d=1:x=’iw/2-(iw/zoom/2)’:y=’ih/2-(ih/zoom/2)’

10.203 zscale# TOC

Scale (resize) the input video, using the z.lib library: https://github.com/sekrit-twc/zimg. To enable
compilation of this filter, you need to configure FFmpeg with --enable-libzimg.

The zscale filter forces the output display aspect ratio to be the same as the input, by changing the output
sample aspect ratio.

If the input image format is different from the format requested by the next filter, the zscale filter will
convert the input to the requested format.

10.203.1 Options# TOC

The filter accepts the following options.

width, w
height, h

https://github.com/sekrit-twc/zimg

Set the output video dimension expression. Default value is the input dimension.

If the width or w value is 0, the input width is used for the output. If the height or h value is 0, the
input height is used for the output.

If one and only one of the values is -n with n >= 1, the zscale filter will use a value that maintains the
aspect ratio of the input image, calculated from the other specified dimension. After that it will, however,
make sure that the calculated dimension is divisible by n and adjust the value if necessary.

If both values are -n with n >= 1, the behavior will be identical to both values being set to 0 as
previously detailed.

See below for the list of accepted constants for use in the dimension expression.

size, s

Set the video size. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in the
ffmpeg-utils manual.

dither, d

Set the dither type.

Possible values are:

none
ordered
random
error_diffusion

Default is none.

filter, f

Set the resize filter type.

Possible values are:

point
bilinear
bicubic
spline16
spline36
lanczos

Default is bilinear.

range, r

Set the color range.

Possible values are:

input
limited
full

Default is same as input.

primaries, p

Set the color primaries.

Possible values are:

input
709
unspecified
170m
240m
2020

Default is same as input.

transfer, t

Set the transfer characteristics.

Possible values are:

input
709
unspecified
601
linear
2020_10
2020_12
smpte2084
iec61966-2-1
arib-std-b67

Default is same as input.

matrix, m

Set the colorspace matrix.

Possible value are:

input
709
unspecified
470bg
170m
2020_ncl
2020_cl

Default is same as input.

rangein, rin

Set the input color range.

Possible values are:

input
limited
full

Default is same as input.

primariesin, pin

Set the input color primaries.

Possible values are:

input
709
unspecified
170m
240m
2020

Default is same as input.

transferin, tin

Set the input transfer characteristics.

Possible values are:

input
709
unspecified
601
linear
2020_10
2020_12

Default is same as input.

matrixin, min

Set the input colorspace matrix.

Possible value are:

input
709
unspecified
470bg
170m
2020_ncl
2020_cl

chromal, c

Set the output chroma location.

Possible values are:

input
left
center
topleft
top
bottomleft
bottom

chromalin, cin

Set the input chroma location.

Possible values are:

input
left
center
topleft

top
bottomleft
bottom

npl

Set the nominal peak luminance.

The values of the w and h options are expressions containing the following constants:

in_w
in_h

The input width and height

iw
ih

These are the same as in_w and in_h.

out_w
out_h

The output (scaled) width and height

ow
oh

These are the same as out_w and out_h

a

The same as iw / ih

sar

input sample aspect ratio

dar

The input display aspect ratio. Calculated from (iw / ih) * sar.

hsub
vsub

horizontal and vertical input chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

ohsub

ovsub

horizontal and vertical output chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

11 Video Sources# TOC
Below is a description of the currently available video sources.

11.1 buffer# TOC

Buffer video frames, and make them available to the filter chain.

This source is mainly intended for a programmatic use, in particular through the interface defined in
libavfilter/vsrc_buffer.h.

It accepts the following parameters:

video_size

Specify the size (width and height) of the buffered video frames. For the syntax of this option, check
the (ffmpeg-utils)"Video size" section in the ffmpeg-utils manual.

width

The input video width.

height

The input video height.

pix_fmt

A string representing the pixel format of the buffered video frames. It may be a number
corresponding to a pixel format, or a pixel format name.

time_base

Specify the timebase assumed by the timestamps of the buffered frames.

frame_rate

Specify the frame rate expected for the video stream.

pixel_aspect, sar

The sample (pixel) aspect ratio of the input video.

sws_param

Specify the optional parameters to be used for the scale filter which is automatically inserted when an
input change is detected in the input size or format.

hw_frames_ctx

When using a hardware pixel format, this should be a reference to an AVHWFramesContext
describing input frames.

For example:

buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1

will instruct the source to accept video frames with size 320x240 and with format "yuv410p", assuming
1/24 as the timestamps timebase and square pixels (1:1 sample aspect ratio). Since the pixel format with
name "yuv410p" corresponds to the number 6 (check the enum AVPixelFormat definition in
libavutil/pixfmt.h), this example corresponds to:

buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1

Alternatively, the options can be specified as a flat string, but this syntax is deprecated:

width:height:pix_fmt:time_base.num:time_base.den:pixel_aspect.num:pixel_aspect.den[:sws_param]

11.2 cellauto# TOC

Create a pattern generated by an elementary cellular automaton.

The initial state of the cellular automaton can be defined through the filename and pattern options.
If such options are not specified an initial state is created randomly.

At each new frame a new row in the video is filled with the result of the cellular automaton next
generation. The behavior when the whole frame is filled is defined by the scroll option.

This source accepts the following options:

filename, f

Read the initial cellular automaton state, i.e. the starting row, from the specified file. In the file, each
non-whitespace character is considered an alive cell, a newline will terminate the row, and further
characters in the file will be ignored.

pattern, p

Read the initial cellular automaton state, i.e. the starting row, from the specified string.

Each non-whitespace character in the string is considered an alive cell, a newline will terminate the
row, and further characters in the string will be ignored.

rate, r

Set the video rate, that is the number of frames generated per second. Default is 25.

random_fill_ratio, ratio

Set the random fill ratio for the initial cellular automaton row. It is a floating point number value
ranging from 0 to 1, defaults to 1/PHI.

This option is ignored when a file or a pattern is specified.

random_seed, seed

Set the seed for filling randomly the initial row, must be an integer included between 0 and
UINT32_MAX. If not specified, or if explicitly set to -1, the filter will try to use a good random seed
on a best effort basis.

rule

Set the cellular automaton rule, it is a number ranging from 0 to 255. Default value is 110.

size, s

Set the size of the output video. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual.

If filename or pattern is specified, the size is set by default to the width of the specified initial
state row, and the height is set to width * PHI.

If size is set, it must contain the width of the specified pattern string, and the specified pattern will
be centered in the larger row.

If a filename or a pattern string is not specified, the size value defaults to "320x518" (used for a
randomly generated initial state).

scroll

If set to 1, scroll the output upward when all the rows in the output have been already filled. If set to
0, the new generated row will be written over the top row just after the bottom row is filled. Defaults
to 1.

start_full, full

If set to 1, completely fill the output with generated rows before outputting the first frame. This is the
default behavior, for disabling set the value to 0.

stitch

If set to 1, stitch the left and right row edges together. This is the default behavior, for disabling set
the value to 0.

11.2.1 Examples# TOC

Read the initial state from pattern, and specify an output of size 200x400.

cellauto=f=pattern:s=200x400

Generate a random initial row with a width of 200 cells, with a fill ratio of 2/3:

cellauto=ratio=2/3:s=200x200

Create a pattern generated by rule 18 starting by a single alive cell centered on an initial row with
width 100:

cellauto=p=@:s=100x400:full=0:rule=18

Specify a more elaborated initial pattern:

cellauto=p=’@@ @ @@’:s=100x400:full=0:rule=18

11.3 coreimagesrc# TOC

Video source generated on GPU using Apple’s CoreImage API on OSX.

This video source is a specialized version of the coreimage video filter. Use a core image generator at the
beginning of the applied filterchain to generate the content.

The coreimagesrc video source accepts the following options:

list_generators

List all available generators along with all their respective options as well as possible minimum and
maximum values along with the default values.

list_generators=true

size, s

Specify the size of the sourced video. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. The default value is 320x240.

rate, r

Specify the frame rate of the sourced video, as the number of frames generated per second. It has to
be a string in the format frame_rate_num/frame_rate_den, an integer number, a floating point
number or a valid video frame rate abbreviation. The default value is "25".

sar

Set the sample aspect ratio of the sourced video.

duration, d

Set the duration of the sourced video. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax.

If not specified, or the expressed duration is negative, the video is supposed to be generated forever.

Additionally, all options of the coreimage video filter are accepted. A complete filterchain can be used for
further processing of the generated input without CPU-HOST transfer. See coreimage documentation and
examples for details.

11.3.1 Examples# TOC

Use CIQRCodeGenerator to create a QR code for the FFmpeg homepage, given as complete and
escaped command-line for Apple’s standard bash shell:

ffmpeg -f lavfi -i coreimagesrc=s=100x100:filter=CIQRCodeGenerator@inputMessage=https\\\\\://FFmpeg.org/@inputCorrectionLevel=H -frames:v 1 QRCode.png

This example is equivalent to the QRCode example of coreimage without the need for a nullsrc video
source.

11.4 mandelbrot# TOC

Generate a Mandelbrot set fractal, and progressively zoom towards the point specified with start_x and
start_y.

This source accepts the following options:

end_pts

Set the terminal pts value. Default value is 400.

end_scale

Set the terminal scale value. Must be a floating point value. Default value is 0.3.

inner

Set the inner coloring mode, that is the algorithm used to draw the Mandelbrot fractal internal region.

It shall assume one of the following values:

black

Set black mode.

convergence

Show time until convergence.

mincol

Set color based on point closest to the origin of the iterations.

period

Set period mode.

Default value is mincol.

bailout

Set the bailout value. Default value is 10.0.

maxiter

Set the maximum of iterations performed by the rendering algorithm. Default value is 7189.

outer

Set outer coloring mode. It shall assume one of following values:

iteration_count

Set iteration cound mode.

normalized_iteration_count

set normalized iteration count mode.

Default value is normalized_iteration_count.

rate, r

Set frame rate, expressed as number of frames per second. Default value is "25".

size, s

Set frame size. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in the
ffmpeg-utils manual. Default value is "640x480".

start_scale

Set the initial scale value. Default value is 3.0.

start_x

Set the initial x position. Must be a floating point value between -100 and 100. Default value is
-0.743643887037158704752191506114774.

start_y

Set the initial y position. Must be a floating point value between -100 and 100. Default value is
-0.131825904205311970493132056385139.

11.5 mptestsrc# TOC

Generate various test patterns, as generated by the MPlayer test filter.

The size of the generated video is fixed, and is 256x256. This source is useful in particular for testing
encoding features.

This source accepts the following options:

rate, r

Specify the frame rate of the sourced video, as the number of frames generated per second. It has to
be a string in the format frame_rate_num/frame_rate_den, an integer number, a floating point
number or a valid video frame rate abbreviation. The default value is "25".

duration, d

Set the duration of the sourced video. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax.

If not specified, or the expressed duration is negative, the video is supposed to be generated forever.

test, t

Set the number or the name of the test to perform. Supported tests are:

dc_luma
dc_chroma
freq_luma
freq_chroma
amp_luma
amp_chroma
cbp
mv
ring1

ring2
all

Default value is "all", which will cycle through the list of all tests.

Some examples:

mptestsrc=t=dc_luma

will generate a "dc_luma" test pattern.

11.6 frei0r_src# TOC

Provide a frei0r source.

To enable compilation of this filter you need to install the frei0r header and configure FFmpeg with
--enable-frei0r.

This source accepts the following parameters:

size

The size of the video to generate. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual.

framerate

The framerate of the generated video. It may be a string of the form num/den or a frame rate
abbreviation.

filter_name

The name to the frei0r source to load. For more information regarding frei0r and how to set the
parameters, read the frei0r section in the video filters documentation.

filter_params

A ’|’-separated list of parameters to pass to the frei0r source.

For example, to generate a frei0r partik0l source with size 200x200 and frame rate 10 which is overlaid on
the overlay filter main input:

frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay

11.7 life# TOC

Generate a life pattern.

This source is based on a generalization of John Conway’s life game.

The sourced input represents a life grid, each pixel represents a cell which can be in one of two possible
states, alive or dead. Every cell interacts with its eight neighbours, which are the cells that are horizontally,
vertically, or diagonally adjacent.

At each interaction the grid evolves according to the adopted rule, which specifies the number of neighbor
alive cells which will make a cell stay alive or born. The rule option allows one to specify the rule to
adopt.

This source accepts the following options:

filename, f

Set the file from which to read the initial grid state. In the file, each non-whitespace character is
considered an alive cell, and newline is used to delimit the end of each row.

If this option is not specified, the initial grid is generated randomly.

rate, r

Set the video rate, that is the number of frames generated per second. Default is 25.

random_fill_ratio, ratio

Set the random fill ratio for the initial random grid. It is a floating point number value ranging from 0
to 1, defaults to 1/PHI. It is ignored when a file is specified.

random_seed, seed

Set the seed for filling the initial random grid, must be an integer included between 0 and
UINT32_MAX. If not specified, or if explicitly set to -1, the filter will try to use a good random seed
on a best effort basis.

rule

Set the life rule.

A rule can be specified with a code of the kind "SNS/BNB", where NS and NB are sequences of
numbers in the range 0-8, NS specifies the number of alive neighbor cells which make a live cell stay
alive, and NB the number of alive neighbor cells which make a dead cell to become alive (i.e. to
"born"). "s" and "b" can be used in place of "S" and "B", respectively.

Alternatively a rule can be specified by an 18-bits integer. The 9 high order bits are used to encode
the next cell state if it is alive for each number of neighbor alive cells, the low order bits specify the
rule for "borning" new cells. Higher order bits encode for an higher number of neighbor cells. For
example the number 6153 = (12<<9)+9 specifies a stay alive rule of 12 and a born rule of 9, which
corresponds to "S23/B03".

Default value is "S23/B3", which is the original Conway’s game of life rule, and will keep a cell alive
if it has 2 or 3 neighbor alive cells, and will born a new cell if there are three alive cells around a dead cell.

size, s

Set the size of the output video. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual.

If filename is specified, the size is set by default to the same size of the input file. If size is set, it
must contain the size specified in the input file, and the initial grid defined in that file is centered in
the larger resulting area.

If a filename is not specified, the size value defaults to "320x240" (used for a randomly generated
initial grid).

stitch

If set to 1, stitch the left and right grid edges together, and the top and bottom edges also. Defaults to
1.

mold

Set cell mold speed. If set, a dead cell will go from death_color to mold_color with a step of
mold. mold can have a value from 0 to 255.

life_color

Set the color of living (or new born) cells.

death_color

Set the color of dead cells. If mold is set, this is the first color used to represent a dead cell.

mold_color

Set mold color, for definitely dead and moldy cells.

For the syntax of these 3 color options, check the (ffmpeg-utils)"Color" section in the ffmpeg-utils
manual.

11.7.1 Examples# TOC

Read a grid from pattern, and center it on a grid of size 300x300 pixels:

life=f=pattern:s=300x300

Generate a random grid of size 200x200, with a fill ratio of 2/3:

life=ratio=2/3:s=200x200

Specify a custom rule for evolving a randomly generated grid:

life=rule=S14/B34

Full example with slow death effect (mold) using ffplay:

ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16

11.8 allrgb, allyuv, color, haldclutsrc, nullsrc, pal75bars, pal100bars,
rgbtestsrc, smptebars, smptehdbars, testsrc, testsrc2, yuvtestsrc# TOC

The allrgb source returns frames of size 4096x4096 of all rgb colors.

The allyuv source returns frames of size 4096x4096 of all yuv colors.

The color source provides an uniformly colored input.

The haldclutsrc source provides an identity Hald CLUT. See also haldclut filter.

The nullsrc source returns unprocessed video frames. It is mainly useful to be employed in analysis /
debugging tools, or as the source for filters which ignore the input data.

The pal75bars source generates a color bars pattern, based on EBU PAL recommendations with 75%
color levels.

The pal100bars source generates a color bars pattern, based on EBU PAL recommendations with
100% color levels.

The rgbtestsrc source generates an RGB test pattern useful for detecting RGB vs BGR issues. You
should see a red, green and blue stripe from top to bottom.

The smptebars source generates a color bars pattern, based on the SMPTE Engineering Guideline EG
1-1990.

The smptehdbars source generates a color bars pattern, based on the SMPTE RP 219-2002.

The testsrc source generates a test video pattern, showing a color pattern, a scrolling gradient and a
timestamp. This is mainly intended for testing purposes.

The testsrc2 source is similar to testsrc, but supports more pixel formats instead of just rgb24. This
allows using it as an input for other tests without requiring a format conversion.

The yuvtestsrc source generates an YUV test pattern. You should see a y, cb and cr stripe from top to
bottom.

The sources accept the following parameters:

level

Specify the level of the Hald CLUT, only available in the haldclutsrc source. A level of N
generates a picture of N*N*N by N*N*N pixels to be used as identity matrix for 3D lookup tables.
Each component is coded on a 1/(N*N) scale.

color, c

Specify the color of the source, only available in the color source. For the syntax of this option,
check the (ffmpeg-utils)"Color" section in the ffmpeg-utils manual.

size, s

Specify the size of the sourced video. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. The default value is 320x240.

This option is not available with the allrgb, allyuv, and haldclutsrc filters.

rate, r

Specify the frame rate of the sourced video, as the number of frames generated per second. It has to
be a string in the format frame_rate_num/frame_rate_den, an integer number, a floating point
number or a valid video frame rate abbreviation. The default value is "25".

duration, d

Set the duration of the sourced video. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax.

If not specified, or the expressed duration is negative, the video is supposed to be generated forever.

sar

Set the sample aspect ratio of the sourced video.

alpha

Specify the alpha (opacity) of the background, only available in the testsrc2 source. The value
must be between 0 (fully transparent) and 255 (fully opaque, the default).

decimals, n

Set the number of decimals to show in the timestamp, only available in the testsrc source.

The displayed timestamp value will correspond to the original timestamp value multiplied by the
power of 10 of the specified value. Default value is 0.

11.8.1 Examples# TOC

Generate a video with a duration of 5.3 seconds, with size 176x144 and a frame rate of 10 frames per
second:

testsrc=duration=5.3:size=qcif:rate=10

The following graph description will generate a red source with an opacity of 0.2, with size "qcif"
and a frame rate of 10 frames per second:

color=c=red@0.2:s=qcif:r=10

If the input content is to be ignored, nullsrc can be used. The following command generates noise
in the luminance plane by employing the geq filter:

nullsrc=s=256x256, geq=random(1)*255:128:128

11.8.2 Commands# TOC

The color source supports the following commands:

c, color

Set the color of the created image. Accepts the same syntax of the corresponding color option.

11.9 openclsrc# TOC

Generate video using an OpenCL program.

source

OpenCL program source file.

kernel

Kernel name in program.

size, s

Size of frames to generate. This must be set.

format

Pixel format to use for the generated frames. This must be set.

rate, r

Number of frames generated every second. Default value is ’25’.

For details of how the program loading works, see the program_opencl filter.

Example programs:

Generate a colour ramp by setting pixel values from the position of the pixel in the output image.
(Note that this will work with all pixel formats, but the generated output will not be the same.)

__kernel void ramp(__write_only image2d_t dst,
 unsigned int index)
{
 int2 loc = (int2)(get_global_id(0), get_global_id(1));

 float4 val;
 val.xy = val.zw = convert_float2(loc) / convert_float2(get_image_dim(dst));

 write_imagef(dst, loc, val);
}

Generate a Sierpinski carpet pattern, panning by a single pixel each frame.

__kernel void sierpinski_carpet(__write_only image2d_t dst,
 unsigned int index)
{
 int2 loc = (int2)(get_global_id(0), get_global_id(1));

 float4 value = 0.0f;
 int x = loc.x + index;
 int y = loc.y + index;
 while (x > 0 || y > 0) {
 if (x % 3 == 1 && y % 3 == 1) {
 value = 1.0f;
 break;
 }
 x /= 3;
 y /= 3;
 }

 write_imagef(dst, loc, value);
}

12 Video Sinks# TOC
Below is a description of the currently available video sinks.

12.1 buffersink# TOC

Buffer video frames, and make them available to the end of the filter graph.

This sink is mainly intended for programmatic use, in particular through the interface defined in
libavfilter/buffersink.h or the options system.

It accepts a pointer to an AVBufferSinkContext structure, which defines the incoming buffers’ formats, to
be passed as the opaque parameter to avfilter_init_filter for initialization.

12.2 nullsink# TOC

Null video sink: do absolutely nothing with the input video. It is mainly useful as a template and for use in
analysis / debugging tools.

13 Multimedia Filters# TOC
Below is a description of the currently available multimedia filters.

13.1 abitscope# TOC

Convert input audio to a video output, displaying the audio bit scope.

The filter accepts the following options:

rate, r

Set frame rate, expressed as number of frames per second. Default value is "25".

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 1024x256.

colors

Specify list of colors separated by space or by ’|’ which will be used to draw channels. Unrecognized
or missing colors will be replaced by white color.

13.2 ahistogram# TOC

Convert input audio to a video output, displaying the volume histogram.

The filter accepts the following options:

dmode

Specify how histogram is calculated.

It accepts the following values:

‘single’

Use single histogram for all channels.

‘separate’

Use separate histogram for each channel.

Default is single.

rate, r

Set frame rate, expressed as number of frames per second. Default value is "25".

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is hd720.

scale

Set display scale.

It accepts the following values:

‘log’

logarithmic

‘sqrt’

square root

‘cbrt’

cubic root

‘lin’

linear

‘rlog’

reverse logarithmic

Default is log.

ascale

Set amplitude scale.

It accepts the following values:

‘log’

logarithmic

‘lin’

linear

Default is log.

acount

Set how much frames to accumulate in histogram. Defauls is 1. Setting this to -1 accumulates all
frames.

rheight

Set histogram ratio of window height.

slide

Set sonogram sliding.

It accepts the following values:

‘replace’

replace old rows with new ones.

‘scroll’

scroll from top to bottom.

Default is replace.

13.3 aphasemeter# TOC

Measures phase of input audio, which is exported as metadata lavfi.aphasemeter.phase,
representing mean phase of current audio frame. A video output can also be produced and is enabled by
default. The audio is passed through as first output.

Audio will be rematrixed to stereo if it has a different channel layout. Phase value is in range [-1, 1]
where -1 means left and right channels are completely out of phase and 1 means channels are in phase.

The filter accepts the following options, all related to its video output:

rate, r

Set the output frame rate. Default value is 25.

size, s

Set the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual. Default value is 800x400.

rc
gc
bc

Specify the red, green, blue contrast. Default values are 2, 7 and 1. Allowed range is [0, 255].

mpc

Set color which will be used for drawing median phase. If color is none which is default, no median
phase value will be drawn.

video

Enable video output. Default is enabled.

13.4 avectorscope# TOC

Convert input audio to a video output, representing the audio vector scope.

The filter is used to measure the difference between channels of stereo audio stream. A monoaural signal,
consisting of identical left and right signal, results in straight vertical line. Any stereo separation is visible
as a deviation from this line, creating a Lissajous figure. If the straight (or deviation from it) but horizontal
line appears this indicates that the left and right channels are out of phase.

The filter accepts the following options:

mode, m

Set the vectorscope mode.

Available values are:

‘lissajous’

Lissajous rotated by 45 degrees.

‘lissajous_xy’

Same as above but not rotated.

‘polar’

Shape resembling half of circle.

Default value is ‘lissajous’.

size, s

Set the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual. Default value is 400x400.

rate, r

Set the output frame rate. Default value is 25.

rc
gc
bc
ac

Specify the red, green, blue and alpha contrast. Default values are 40, 160, 80 and 255. Allowed
range is [0, 255].

rf
gf
bf
af

Specify the red, green, blue and alpha fade. Default values are 15, 10, 5 and 5. Allowed range is
[0, 255].

zoom

Set the zoom factor. Default value is 1. Allowed range is [0, 10]. Values lower than 1 will auto
adjust zoom factor to maximal possible value.

draw

Set the vectorscope drawing mode.

Available values are:

‘dot’

Draw dot for each sample.

‘line’

Draw line between previous and current sample.

Default value is ‘dot’.

scale

Specify amplitude scale of audio samples.

Available values are:

‘lin’

Linear.

‘sqrt’

Square root.

‘cbrt’

Cubic root.

‘log’

Logarithmic.

swap

Swap left channel axis with right channel axis.

mirror

Mirror axis.

‘none’

No mirror.

‘x’

Mirror only x axis.

‘y’

Mirror only y axis.

‘xy’

Mirror both axis.

13.4.1 Examples# TOC

Complete example using ffplay:

ffplay -f lavfi ’amovie=input.mp3, asplit [a][out1];
 [a] avectorscope=zoom=1.3:rc=2:gc=200:bc=10:rf=1:gf=8:bf=7 [out0]’

13.5 bench, abench# TOC

Benchmark part of a filtergraph.

The filter accepts the following options:

action

Start or stop a timer.

Available values are:

‘start’

Get the current time, set it as frame metadata (using the key lavfi.bench.start_time),
and forward the frame to the next filter.

‘stop’

Get the current time and fetch the lavfi.bench.start_time metadata from the input
frame metadata to get the time difference. Time difference, average, maximum and minimum
time (respectively t, avg, max and min) are then printed. The timestamps are expressed in
seconds.

13.5.1 Examples# TOC

Benchmark selectivecolor filter:

bench=start,selectivecolor=reds=-.2 .12 -.49,bench=stop

13.6 concat# TOC

Concatenate audio and video streams, joining them together one after the other.

The filter works on segments of synchronized video and audio streams. All segments must have the same
number of streams of each type, and that will also be the number of streams at output.

The filter accepts the following options:

n

Set the number of segments. Default is 2.

v

Set the number of output video streams, that is also the number of video streams in each segment.
Default is 1.

a

Set the number of output audio streams, that is also the number of audio streams in each segment.
Default is 0.

unsafe

Activate unsafe mode: do not fail if segments have a different format.

The filter has v+a outputs: first v video outputs, then a audio outputs.

There are nx(v+a) inputs: first the inputs for the first segment, in the same order as the outputs, then the
inputs for the second segment, etc.

Related streams do not always have exactly the same duration, for various reasons including codec frame
size or sloppy authoring. For that reason, related synchronized streams (e.g. a video and its audio track)
should be concatenated at once. The concat filter will use the duration of the longest stream in each
segment (except the last one), and if necessary pad shorter audio streams with silence.

For this filter to work correctly, all segments must start at timestamp 0.

All corresponding streams must have the same parameters in all segments; the filtering system will
automatically select a common pixel format for video streams, and a common sample format, sample rate
and channel layout for audio streams, but other settings, such as resolution, must be converted explicitly
by the user.

Different frame rates are acceptable but will result in variable frame rate at output; be sure to configure the
output file to handle it.

13.6.1 Examples# TOC

Concatenate an opening, an episode and an ending, all in bilingual version (video in stream 0, audio
in streams 1 and 2):

ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
 ’[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
 concat=n=3:v=1:a=2 [v] [a1] [a2]’ \
 -map ’[v]’ -map ’[a1]’ -map ’[a2]’ output.mkv

Concatenate two parts, handling audio and video separately, using the (a)movie sources, and
adjusting the resolution:

movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
[v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]

Note that a desync will happen at the stitch if the audio and video streams do not have exactly the
same duration in the first file.

13.6.2 Commands# TOC

This filter supports the following commands:

next

Close the current segment and step to the next one

13.7 drawgraph, adrawgraph# TOC

Draw a graph using input video or audio metadata.

It accepts the following parameters:

m1

Set 1st frame metadata key from which metadata values will be used to draw a graph.

fg1

Set 1st foreground color expression.

m2

Set 2nd frame metadata key from which metadata values will be used to draw a graph.

fg2

Set 2nd foreground color expression.

m3

Set 3rd frame metadata key from which metadata values will be used to draw a graph.

fg3

Set 3rd foreground color expression.

m4

Set 4th frame metadata key from which metadata values will be used to draw a graph.

fg4

Set 4th foreground color expression.

min

Set minimal value of metadata value.

max

Set maximal value of metadata value.

bg

Set graph background color. Default is white.

mode

Set graph mode.

Available values for mode is:

‘bar’
‘dot’
‘line’

Default is line.

slide

Set slide mode.

Available values for slide is:

‘frame’

Draw new frame when right border is reached.

‘replace’

Replace old columns with new ones.

‘scroll’

Scroll from right to left.

‘rscroll’

Scroll from left to right.

‘picture’

Draw single picture.

Default is frame.

size

Set size of graph video. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in
the ffmpeg-utils manual. The default value is 900x256.

The foreground color expressions can use the following variables:

MIN

Minimal value of metadata value.

MAX

Maximal value of metadata value.

VAL

Current metadata key value.

The color is defined as 0xAABBGGRR.

Example using metadata from signalstats filter:

signalstats,drawgraph=lavfi.signalstats.YAVG:min=0:max=255

Example using metadata from ebur128 filter:

ebur128=metadata=1,adrawgraph=lavfi.r128.M:min=-120:max=5

13.8 ebur128# TOC

EBU R128 scanner filter. This filter takes an audio stream as input and outputs it unchanged. By default, it
logs a message at a frequency of 10Hz with the Momentary loudness (identified by M), Short-term
loudness (S), Integrated loudness (I) and Loudness Range (LRA).

The filter also has a video output (see the video option) with a real time graph to observe the loudness
evolution. The graphic contains the logged message mentioned above, so it is not printed anymore when
this option is set, unless the verbose logging is set. The main graphing area contains the short-term
loudness (3 seconds of analysis), and the gauge on the right is for the momentary loudness (400
milliseconds).

More information about the Loudness Recommendation EBU R128 on http://tech.ebu.ch/loudness.

The filter accepts the following options:

video

Activate the video output. The audio stream is passed unchanged whether this option is set or no. The
video stream will be the first output stream if activated. Default is 0.

size

Set the video size. This option is for video only. For the syntax of this option, check the
(ffmpeg-utils)"Video size" section in the ffmpeg-utils manual. Default and minimum resolution is
640x480.

meter

Set the EBU scale meter. Default is 9. Common values are 9 and 18, respectively for EBU scale
meter +9 and EBU scale meter +18. Any other integer value between this range is allowed.

metadata

Set metadata injection. If set to 1, the audio input will be segmented into 100ms output frames, each
of them containing various loudness information in metadata. All the metadata keys are prefixed with
lavfi.r128..

Default is 0.

framelog

Force the frame logging level.

Available values are:

‘info’

information logging level

‘verbose’

verbose logging level

By default, the logging level is set to info. If the video or the metadata options are set, it switches
to verbose.

peak

Set peak mode(s).

http://tech.ebu.ch/loudness

Available modes can be cumulated (the option is a flag type). Possible values are:

‘none’

Disable any peak mode (default).

‘sample’

Enable sample-peak mode.

Simple peak mode looking for the higher sample value. It logs a message for sample-peak
(identified by SPK).

‘true’

Enable true-peak mode.

If enabled, the peak lookup is done on an over-sampled version of the input stream for better
peak accuracy. It logs a message for true-peak. (identified by TPK) and true-peak per frame
(identified by FTPK). This mode requires a build with libswresample.

dualmono

Treat mono input files as "dual mono". If a mono file is intended for playback on a stereo system, its
EBU R128 measurement will be perceptually incorrect. If set to true, this option will compensate
for this effect. Multi-channel input files are not affected by this option.

panlaw

Set a specific pan law to be used for the measurement of dual mono files. This parameter is optional,
and has a default value of -3.01dB.

13.8.1 Examples# TOC

Real-time graph using ffplay, with a EBU scale meter +18:

ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"

Run an analysis with ffmpeg:

ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -

13.9 interleave, ainterleave# TOC

Temporally interleave frames from several inputs.

interleave works with video inputs, ainterleave with audio.

These filters read frames from several inputs and send the oldest queued frame to the output.

Input streams must have well defined, monotonically increasing frame timestamp values.

In order to submit one frame to output, these filters need to enqueue at least one frame for each input, so
they cannot work in case one input is not yet terminated and will not receive incoming frames.

For example consider the case when one input is a select filter which always drops input frames. The
interleave filter will keep reading from that input, but it will never be able to send new frames to
output until the input sends an end-of-stream signal.

Also, depending on inputs synchronization, the filters will drop frames in case one input receives more
frames than the other ones, and the queue is already filled.

These filters accept the following options:

nb_inputs, n

Set the number of different inputs, it is 2 by default.

13.9.1 Examples# TOC

Interleave frames belonging to different streams using ffmpeg:

ffmpeg -i bambi.avi -i pr0n.mkv -filter_complex "[0:v][1:v] interleave" out.avi

Add flickering blur effect:

select=’if(gt(random(0), 0.2), 1, 2)’:n=2 [tmp], boxblur=2:2, [tmp] interleave

13.10 metadata, ametadata# TOC

Manipulate frame metadata.

This filter accepts the following options:

mode

Set mode of operation of the filter.

Can be one of the following:

‘select’

If both value and key is set, select frames which have such metadata. If only key is set, select
every frame that has such key in metadata.

‘add’

Add new metadata key and value. If key is already available do nothing.

‘modify’

Modify value of already present key.

‘delete’

If value is set, delete only keys that have such value. Otherwise, delete key. If key is not set,
delete all metadata values in the frame.

‘print’

Print key and its value if metadata was found. If key is not set print all metadata values
available in frame.

key

Set key used with all modes. Must be set for all modes except print and delete.

value

Set metadata value which will be used. This option is mandatory for modify and add mode.

function

Which function to use when comparing metadata value and value.

Can be one of following:

‘same_str’

Values are interpreted as strings, returns true if metadata value is same as value.

‘starts_with’

Values are interpreted as strings, returns true if metadata value starts with the value option
string.

‘less’

Values are interpreted as floats, returns true if metadata value is less than value.

‘equal’

Values are interpreted as floats, returns true if value is equal with metadata value.

‘greater’

Values are interpreted as floats, returns true if metadata value is greater than value.

‘expr’

Values are interpreted as floats, returns true if expression from option expr evaluates to true.

expr

Set expression which is used when function is set to expr. The expression is evaluated through
the eval API and can contain the following constants:

VALUE1

Float representation of value from metadata key.

VALUE2

Float representation of value as supplied by user in value option.

file

If specified in print mode, output is written to the named file. Instead of plain filename any
writable url can be specified. Filename “-” is a shorthand for standard output. If file option is not
set, output is written to the log with AV_LOG_INFO loglevel.

13.10.1 Examples# TOC

Print all metadata values for frames with key lavfi.signalstats.YDIF with values between 0
and 1.

signalstats,metadata=print:key=lavfi.signalstats.YDIF:value=0:function=expr:expr=’between(VALUE1,0,1)’

Print silencedetect output to file metadata.txt.

silencedetect,ametadata=mode=print:file=metadata.txt

Direct all metadata to a pipe with file descriptor 4.

metadata=mode=print:file=’pipe\:4’

13.11 perms, aperms# TOC

Set read/write permissions for the output frames.

These filters are mainly aimed at developers to test direct path in the following filter in the filtergraph.

The filters accept the following options:

mode

Select the permissions mode.

It accepts the following values:

‘none’

Do nothing. This is the default.

‘ro’

Set all the output frames read-only.

‘rw’

Set all the output frames directly writable.

‘toggle’

Make the frame read-only if writable, and writable if read-only.

‘random’

Set each output frame read-only or writable randomly.

seed

Set the seed for the random mode, must be an integer included between 0 and UINT32_MAX. If not
specified, or if explicitly set to -1, the filter will try to use a good random seed on a best effort basis.

Note: in case of auto-inserted filter between the permission filter and the following one, the permission
might not be received as expected in that following filter. Inserting a format or aformat filter before the
perms/aperms filter can avoid this problem.

13.12 realtime, arealtime# TOC

Slow down filtering to match real time approximately.

These filters will pause the filtering for a variable amount of time to match the output rate with the input
timestamps. They are similar to the re option to ffmpeg.

They accept the following options:

limit

Time limit for the pauses. Any pause longer than that will be considered a timestamp discontinuity
and reset the timer. Default is 2 seconds.

13.13 select, aselect# TOC

Select frames to pass in output.

This filter accepts the following options:

expr, e

Set expression, which is evaluated for each input frame.

If the expression is evaluated to zero, the frame is discarded.

If the evaluation result is negative or NaN, the frame is sent to the first output; otherwise it is sent to
the output with index ceil(val)-1, assuming that the input index starts from 0.

For example a value of 1.2 corresponds to the output with index ceil(1.2)-1 = 2-1 = 1,
that is the second output.

outputs, n

Set the number of outputs. The output to which to send the selected frame is based on the result of the
evaluation. Default value is 1.

The expression can contain the following constants:

n

The (sequential) number of the filtered frame, starting from 0.

selected_n

The (sequential) number of the selected frame, starting from 0.

prev_selected_n

The sequential number of the last selected frame. It’s NAN if undefined.

TB

The timebase of the input timestamps.

pts

The PTS (Presentation TimeStamp) of the filtered video frame, expressed in TB units. It’s NAN if
undefined.

t

The PTS of the filtered video frame, expressed in seconds. It’s NAN if undefined.

prev_pts

The PTS of the previously filtered video frame. It’s NAN if undefined.

prev_selected_pts

The PTS of the last previously filtered video frame. It’s NAN if undefined.

prev_selected_t

The PTS of the last previously selected video frame, expressed in seconds. It’s NAN if undefined.

start_pts

The PTS of the first video frame in the video. It’s NAN if undefined.

start_t

The time of the first video frame in the video. It’s NAN if undefined.

pict_type (video only)

The type of the filtered frame. It can assume one of the following values:

I
P
B
S
SI
SP
BI

interlace_type (video only)

The frame interlace type. It can assume one of the following values:

PROGRESSIVE

The frame is progressive (not interlaced).

TOPFIRST

The frame is top-field-first.

BOTTOMFIRST

The frame is bottom-field-first.

consumed_sample_n (audio only)

the number of selected samples before the current frame

samples_n (audio only)

the number of samples in the current frame

sample_rate (audio only)

the input sample rate

key

This is 1 if the filtered frame is a key-frame, 0 otherwise.

pos

the position in the file of the filtered frame, -1 if the information is not available (e.g. for synthetic
video)

scene (video only)

value between 0 and 1 to indicate a new scene; a low value reflects a low probability for the current
frame to introduce a new scene, while a higher value means the current frame is more likely to be one
(see the example below)

concatdec_select

The concat demuxer can select only part of a concat input file by setting an inpoint and an outpoint,
but the output packets may not be entirely contained in the selected interval. By using this variable, it
is possible to skip frames generated by the concat demuxer which are not exactly contained in the
selected interval.

This works by comparing the frame pts against the lavf.concat.start_time and the lavf.concat.duration
packet metadata values which are also present in the decoded frames.

The concatdec_select variable is -1 if the frame pts is at least start_time and either the duration
metadata is missing or the frame pts is less than start_time + duration, 0 otherwise, and NaN if the
start_time metadata is missing.

That basically means that an input frame is selected if its pts is within the interval set by the concat
demuxer.

The default value of the select expression is "1".

13.13.1 Examples# TOC

Select all frames in input:

select

The example above is the same as:

select=1

Skip all frames:

select=0

Select only I-frames:

select=’eq(pict_type\,I)’

Select one frame every 100:

select=’not(mod(n\,100))’

Select only frames contained in the 10-20 time interval:

select=between(t\,10\,20)

Select only I-frames contained in the 10-20 time interval:

select=between(t\,10\,20)*eq(pict_type\,I)

Select frames with a minimum distance of 10 seconds:

select=’isnan(prev_selected_t)+gte(t-prev_selected_t\,10)’

Use aselect to select only audio frames with samples number > 100:

aselect=’gt(samples_n\,100)’

Create a mosaic of the first scenes:

ffmpeg -i video.avi -vf select=’gt(scene\,0.4)’,scale=160:120,tile -frames:v 1 preview.png

Comparing scene against a value between 0.3 and 0.5 is generally a sane choice.

Send even and odd frames to separate outputs, and compose them:

select=n=2:e=’mod(n, 2)+1’ [odd][even]; [odd] pad=h=2*ih [tmp]; [tmp][even] overlay=y=h

Select useful frames from an ffconcat file which is using inpoints and outpoints but where the source
files are not intra frame only.

ffmpeg -copyts -vsync 0 -segment_time_metadata 1 -i input.ffconcat -vf select=concatdec_select -af aselect=concatdec_select output.avi

13.14 sendcmd, asendcmd# TOC

Send commands to filters in the filtergraph.

These filters read commands to be sent to other filters in the filtergraph.

sendcmd must be inserted between two video filters, asendcmd must be inserted between two audio
filters, but apart from that they act the same way.

The specification of commands can be provided in the filter arguments with the commands option, or in a
file specified by the filename option.

These filters accept the following options:

commands, c

Set the commands to be read and sent to the other filters.

filename, f

Set the filename of the commands to be read and sent to the other filters.

13.14.1 Commands syntax# TOC

A commands description consists of a sequence of interval specifications, comprising a list of commands
to be executed when a particular event related to that interval occurs. The occurring event is typically the
current frame time entering or leaving a given time interval.

An interval is specified by the following syntax:

START[-END] COMMANDS;

The time interval is specified by the START and END times. END is optional and defaults to the maximum
time.

The current frame time is considered within the specified interval if it is included in the interval [START,
END), that is when the time is greater or equal to START and is lesser than END.

COMMANDS consists of a sequence of one or more command specifications, separated by ",", relating to
that interval. The syntax of a command specification is given by:

[FLAGS] TARGET COMMAND ARG

FLAGS is optional and specifies the type of events relating to the time interval which enable sending the
specified command, and must be a non-null sequence of identifier flags separated by "+" or "|" and
enclosed between "[" and "]".

The following flags are recognized:

enter

The command is sent when the current frame timestamp enters the specified interval. In other words,
the command is sent when the previous frame timestamp was not in the given interval, and the
current is.

leave

The command is sent when the current frame timestamp leaves the specified interval. In other words,
the command is sent when the previous frame timestamp was in the given interval, and the current is
not.

If FLAGS is not specified, a default value of [enter] is assumed.

TARGET specifies the target of the command, usually the name of the filter class or a specific filter
instance name.

COMMAND specifies the name of the command for the target filter.

ARG is optional and specifies the optional list of argument for the given COMMAND.

Between one interval specification and another, whitespaces, or sequences of characters starting with #
until the end of line, are ignored and can be used to annotate comments.

A simplified BNF description of the commands specification syntax follows:

COMMAND_FLAG ::= "enter" | "leave"
COMMAND_FLAGS ::= COMMAND_FLAG [(+|"|")COMMAND_FLAG]
COMMAND ::= ["[" COMMAND_FLAGS "]"] TARGET COMMAND [ARG]
COMMANDS ::= COMMAND [,COMMANDS]
INTERVAL ::= START[-END] COMMANDS
INTERVALS ::= INTERVAL[;INTERVALS]

13.14.2 Examples# TOC

Specify audio tempo change at second 4:

asendcmd=c=’4.0 atempo tempo 1.5’,atempo

Target a specific filter instance:

asendcmd=c=’4.0 atempo@my tempo 1.5’,atempo@my

Specify a list of drawtext and hue commands in a file.

show text in the interval 5-10
5.0-10.0 [enter] drawtext reinit ’fontfile=FreeSerif.ttf:text=hello world’,
 [leave] drawtext reinit ’fontfile=FreeSerif.ttf:text=’;

desaturate the image in the interval 15-20

15.0-20.0 [enter] hue s 0,
 [enter] drawtext reinit ’fontfile=FreeSerif.ttf:text=nocolor’,
 [leave] hue s 1,
 [leave] drawtext reinit ’fontfile=FreeSerif.ttf:text=color’;

apply an exponential saturation fade-out effect, starting from time 25
25 [enter] hue s exp(25-t)

A filtergraph allowing to read and process the above command list stored in a file test.cmd, can be
specified with:

sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text=’’,hue

13.15 setpts, asetpts# TOC

Change the PTS (presentation timestamp) of the input frames.

setpts works on video frames, asetpts on audio frames.

This filter accepts the following options:

expr

The expression which is evaluated for each frame to construct its timestamp.

The expression is evaluated through the eval API and can contain the following constants:

FRAME_RATE, FR

frame rate, only defined for constant frame-rate video

PTS

The presentation timestamp in input

N

The count of the input frame for video or the number of consumed samples, not including the current
frame for audio, starting from 0.

NB_CONSUMED_SAMPLES

The number of consumed samples, not including the current frame (only audio)

NB_SAMPLES, S

The number of samples in the current frame (only audio)

SAMPLE_RATE, SR

The audio sample rate.

STARTPTS

The PTS of the first frame.

STARTT

the time in seconds of the first frame

INTERLACED

State whether the current frame is interlaced.

T

the time in seconds of the current frame

POS

original position in the file of the frame, or undefined if undefined for the current frame

PREV_INPTS

The previous input PTS.

PREV_INT

previous input time in seconds

PREV_OUTPTS

The previous output PTS.

PREV_OUTT

previous output time in seconds

RTCTIME

The wallclock (RTC) time in microseconds. This is deprecated, use time(0) instead.

RTCSTART

The wallclock (RTC) time at the start of the movie in microseconds.

TB

The timebase of the input timestamps.

13.15.1 Examples# TOC

Start counting PTS from zero

setpts=PTS-STARTPTS

Apply fast motion effect:

setpts=0.5*PTS

Apply slow motion effect:

setpts=2.0*PTS

Set fixed rate of 25 frames per second:

setpts=N/(25*TB)

Set fixed rate 25 fps with some jitter:

setpts=’1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))’

Apply an offset of 10 seconds to the input PTS:

setpts=PTS+10/TB

Generate timestamps from a "live source" and rebase onto the current timebase:

setpts=’(RTCTIME - RTCSTART) / (TB * 1000000)’

Generate timestamps by counting samples:

asetpts=N/SR/TB

13.16 setrange# TOC

Force color range for the output video frame.

The setrange filter marks the color range property for the output frames. It does not change the input
frame, but only sets the corresponding property, which affects how the frame is treated by following
filters.

The filter accepts the following options:

range

Available values are:

‘auto’

Keep the same color range property.

‘unspecified, unknown’

Set the color range as unspecified.

‘limited, tv, mpeg’

Set the color range as limited.

‘full, pc, jpeg’

Set the color range as full.

13.17 settb, asettb# TOC

Set the timebase to use for the output frames timestamps. It is mainly useful for testing timebase
configuration.

It accepts the following parameters:

expr, tb

The expression which is evaluated into the output timebase.

The value for tb is an arithmetic expression representing a rational. The expression can contain the
constants "AVTB" (the default timebase), "intb" (the input timebase) and "sr" (the sample rate, audio
only). Default value is "intb".

13.17.1 Examples# TOC

Set the timebase to 1/25:

settb=expr=1/25

Set the timebase to 1/10:

settb=expr=0.1

Set the timebase to 1001/1000:

settb=1+0.001

Set the timebase to 2*intb:

settb=2*intb

Set the default timebase value:

settb=AVTB

13.18 showcqt# TOC

Convert input audio to a video output representing frequency spectrum logarithmically using
Brown-Puckette constant Q transform algorithm with direct frequency domain coefficient calculation (but
the transform itself is not really constant Q, instead the Q factor is actually variable/clamped), with
musical tone scale, from E0 to D#10.

The filter accepts the following options:

size, s

Specify the video size for the output. It must be even. For the syntax of this option, check the
(ffmpeg-utils)"Video size" section in the ffmpeg-utils manual. Default value is 1920x1080.

fps, rate, r

Set the output frame rate. Default value is 25.

bar_h

Set the bargraph height. It must be even. Default value is -1 which computes the bargraph height
automatically.

axis_h

Set the axis height. It must be even. Default value is -1 which computes the axis height
automatically.

sono_h

Set the sonogram height. It must be even. Default value is -1 which computes the sonogram height
automatically.

fullhd

Set the fullhd resolution. This option is deprecated, use size, s instead. Default value is 1.

sono_v, volume

Specify the sonogram volume expression. It can contain variables:

bar_v

the bar_v evaluated expression

frequency, freq, f

the frequency where it is evaluated

timeclamp, tc

the value of timeclamp option

and functions:

a_weighting(f)

A-weighting of equal loudness

b_weighting(f)

B-weighting of equal loudness

c_weighting(f)

C-weighting of equal loudness.

Default value is 16.

bar_v, volume2

Specify the bargraph volume expression. It can contain variables:

sono_v

the sono_v evaluated expression

frequency, freq, f

the frequency where it is evaluated

timeclamp, tc

the value of timeclamp option

and functions:

a_weighting(f)

A-weighting of equal loudness

b_weighting(f)

B-weighting of equal loudness

c_weighting(f)

C-weighting of equal loudness.

Default value is sono_v.

sono_g, gamma

Specify the sonogram gamma. Lower gamma makes the spectrum more contrast, higher gamma
makes the spectrum having more range. Default value is 3. Acceptable range is [1, 7].

bar_g, gamma2

Specify the bargraph gamma. Default value is 1. Acceptable range is [1, 7].

bar_t

Specify the bargraph transparency level. Lower value makes the bargraph sharper. Default value is 1.
Acceptable range is [0, 1].

timeclamp, tc

Specify the transform timeclamp. At low frequency, there is trade-off between accuracy in time
domain and frequency domain. If timeclamp is lower, event in time domain is represented more
accurately (such as fast bass drum), otherwise event in frequency domain is represented more
accurately (such as bass guitar). Acceptable range is [0.002, 1]. Default value is 0.17.

attack

Set attack time in seconds. The default is 0 (disabled). Otherwise, it limits future samples by applying
asymmetric windowing in time domain, useful when low latency is required. Accepted range is [0,
1].

basefreq

Specify the transform base frequency. Default value is 20.01523126408007475, which is
frequency 50 cents below E0. Acceptable range is [10, 100000].

endfreq

Specify the transform end frequency. Default value is 20495.59681441799654, which is
frequency 50 cents above D#10. Acceptable range is [10, 100000].

coeffclamp

This option is deprecated and ignored.

tlength

Specify the transform length in time domain. Use this option to control accuracy trade-off between
time domain and frequency domain at every frequency sample. It can contain variables:

frequency, freq, f

the frequency where it is evaluated

timeclamp, tc

the value of timeclamp option.

Default value is 384*tc/(384+tc*f).

count

Specify the transform count for every video frame. Default value is 6. Acceptable range is [1,
30].

fcount

Specify the transform count for every single pixel. Default value is 0, which makes it computed
automatically. Acceptable range is [0, 10].

fontfile

Specify font file for use with freetype to draw the axis. If not specified, use embedded font. Note that
drawing with font file or embedded font is not implemented with custom basefreq and endfreq, use
axisfile option instead.

font

Specify fontconfig pattern. This has lower priority than fontfile. The : in the pattern may be replaced
by | to avoid unnecessary escaping.

fontcolor

Specify font color expression. This is arithmetic expression that should return integer value
0xRRGGBB. It can contain variables:

frequency, freq, f

the frequency where it is evaluated

timeclamp, tc

the value of timeclamp option

and functions:

midi(f)

midi number of frequency f, some midi numbers: E0(16), C1(24), C2(36), A4(69)

r(x), g(x), b(x)

red, green, and blue value of intensity x.

Default value is st(0, (midi(f)-59.5)/12); st(1, if(between(ld(0),0,1),
0.5-0.5*cos(2*PI*ld(0)), 0)); r(1-ld(1)) + b(ld(1)).

axisfile

Specify image file to draw the axis. This option override fontfile and fontcolor option.

axis, text

Enable/disable drawing text to the axis. If it is set to 0, drawing to the axis is disabled, ignoring
fontfile and axisfile option. Default value is 1.

csp

Set colorspace. The accepted values are:

‘unspecified’

Unspecified (default)

‘bt709’

BT.709

‘fcc’

FCC

‘bt470bg’

BT.470BG or BT.601-6 625

‘smpte170m’

SMPTE-170M or BT.601-6 525

‘smpte240m’

SMPTE-240M

‘bt2020ncl’

BT.2020 with non-constant luminance

cscheme

Set spectrogram color scheme. This is list of floating point values with format
left_r|left_g|left_b|right_r|right_g|right_b. The default is
1|0.5|0|0|0.5|1.

13.18.1 Examples# TOC

Playing audio while showing the spectrum:

ffplay -f lavfi ’amovie=a.mp3, asplit [a][out1]; [a] showcqt [out0]’

Same as above, but with frame rate 30 fps:

ffplay -f lavfi ’amovie=a.mp3, asplit [a][out1]; [a] showcqt=fps=30:count=5 [out0]’

Playing at 1280x720:

ffplay -f lavfi ’amovie=a.mp3, asplit [a][out1]; [a] showcqt=s=1280x720:count=4 [out0]’

Disable sonogram display:

sono_h=0

A1 and its harmonics: A1, A2, (near)E3, A3:

ffplay -f lavfi ’aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
 asplit[a][out1]; [a] showcqt [out0]’

Same as above, but with more accuracy in frequency domain:

ffplay -f lavfi ’aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
 asplit[a][out1]; [a] showcqt=timeclamp=0.5 [out0]’

Custom volume:

bar_v=10:sono_v=bar_v*a_weighting(f)

Custom gamma, now spectrum is linear to the amplitude.

bar_g=2:sono_g=2

Custom tlength equation:

tc=0.33:tlength=’st(0,0.17); 384*tc / (384 / ld(0) + tc*f /(1-ld(0))) + 384*tc / (tc*f / ld(0) + 384 /(1-ld(0)))’

Custom fontcolor and fontfile, C-note is colored green, others are colored blue:

fontcolor=’if(mod(floor(midi(f)+0.5),12), 0x0000FF, g(1))’:fontfile=myfont.ttf

Custom font using fontconfig:

font=’Courier New,Monospace,mono|bold’

Custom frequency range with custom axis using image file:

axisfile=myaxis.png:basefreq=40:endfreq=10000

13.19 showfreqs# TOC

Convert input audio to video output representing the audio power spectrum. Audio amplitude is on Y-axis
while frequency is on X-axis.

The filter accepts the following options:

size, s

Specify size of video. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in
the ffmpeg-utils manual. Default is 1024x512.

mode

Set display mode. This set how each frequency bin will be represented.

It accepts the following values:

‘line’
‘bar’
‘dot’

Default is bar.

ascale

Set amplitude scale.

It accepts the following values:

‘lin’

Linear scale.

‘sqrt’

Square root scale.

‘cbrt’

Cubic root scale.

‘log’

Logarithmic scale.

Default is log.

fscale

Set frequency scale.

It accepts the following values:

‘lin’

Linear scale.

‘log’

Logarithmic scale.

‘rlog’

Reverse logarithmic scale.

Default is lin.

win_size

Set window size.

It accepts the following values:

‘w16’
‘w32’
‘w64’
‘w128’
‘w256’
‘w512’
‘w1024’
‘w2048’
‘w4096’
‘w8192’
‘w16384’
‘w32768’
‘w65536’

Default is w2048

win_func

Set windowing function.

It accepts the following values:

‘rect’
‘bartlett’
‘hanning’
‘hamming’
‘blackman’
‘welch’
‘flattop’
‘bharris’
‘bnuttall’
‘bhann’
‘sine’
‘nuttall’
‘lanczos’
‘gauss’
‘tukey’
‘dolph’
‘cauchy’
‘parzen’
‘poisson’

Default is hanning.

overlap

Set window overlap. In range [0, 1]. Default is 1, which means optimal overlap for selected
window function will be picked.

averaging

Set time averaging. Setting this to 0 will display current maximal peaks. Default is 1, which means
time averaging is disabled.

colors

Specify list of colors separated by space or by ’|’ which will be used to draw channel frequencies.
Unrecognized or missing colors will be replaced by white color.

cmode

Set channel display mode.

It accepts the following values:

‘combined’
‘separate’

Default is combined.

minamp

Set minimum amplitude used in log amplitude scaler.

13.20 showspectrum# TOC

Convert input audio to a video output, representing the audio frequency spectrum.

The filter accepts the following options:

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 640x512.

slide

Specify how the spectrum should slide along the window.

It accepts the following values:

‘replace’

the samples start again on the left when they reach the right

‘scroll’

the samples scroll from right to left

‘fullframe’

frames are only produced when the samples reach the right

‘rscroll’

the samples scroll from left to right

Default value is replace.

mode

Specify display mode.

It accepts the following values:

‘combined’

all channels are displayed in the same row

‘separate’

all channels are displayed in separate rows

Default value is ‘combined’.

color

Specify display color mode.

It accepts the following values:

‘channel’

each channel is displayed in a separate color

‘intensity’

each channel is displayed using the same color scheme

‘rainbow’

each channel is displayed using the rainbow color scheme

‘moreland’

each channel is displayed using the moreland color scheme

‘nebulae’

each channel is displayed using the nebulae color scheme

‘fire’

each channel is displayed using the fire color scheme

‘fiery’

each channel is displayed using the fiery color scheme

‘fruit’

each channel is displayed using the fruit color scheme

‘cool’

each channel is displayed using the cool color scheme

Default value is ‘channel’.

scale

Specify scale used for calculating intensity color values.

It accepts the following values:

‘lin’

linear

‘sqrt’

square root, default

‘cbrt’

cubic root

‘log’

logarithmic

‘4thrt’

4th root

‘5thrt’

5th root

Default value is ‘sqrt’.

saturation

Set saturation modifier for displayed colors. Negative values provide alternative color scheme. 0 is
no saturation at all. Saturation must be in [-10.0, 10.0] range. Default value is 1.

win_func

Set window function.

It accepts the following values:

‘rect’
‘bartlett’
‘hann’
‘hanning’
‘hamming’
‘blackman’
‘welch’
‘flattop’
‘bharris’
‘bnuttall’
‘bhann’
‘sine’
‘nuttall’
‘lanczos’
‘gauss’
‘tukey’
‘dolph’
‘cauchy’
‘parzen’
‘poisson’

Default value is hann.

orientation

Set orientation of time vs frequency axis. Can be vertical or horizontal. Default is
vertical.

overlap

Set ratio of overlap window. Default value is 0. When value is 1 overlap is set to recommended size
for specific window function currently used.

gain

Set scale gain for calculating intensity color values. Default value is 1.

data

Set which data to display. Can be magnitude, default or phase.

rotation

Set color rotation, must be in [-1.0, 1.0] range. Default value is 0.

The usage is very similar to the showwaves filter; see the examples in that section.

13.20.1 Examples# TOC

Large window with logarithmic color scaling:

showspectrum=s=1280x480:scale=log

Complete example for a colored and sliding spectrum per channel using ffplay:

ffplay -f lavfi ’amovie=input.mp3, asplit [a][out1];
 [a] showspectrum=mode=separate:color=intensity:slide=1:scale=cbrt [out0]’

13.21 showspectrumpic# TOC

Convert input audio to a single video frame, representing the audio frequency spectrum.

The filter accepts the following options:

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 4096x2048.

mode

Specify display mode.

It accepts the following values:

‘combined’

all channels are displayed in the same row

‘separate’

all channels are displayed in separate rows

Default value is ‘combined’.

color

Specify display color mode.

It accepts the following values:

‘channel’

each channel is displayed in a separate color

‘intensity’

each channel is displayed using the same color scheme

‘rainbow’

each channel is displayed using the rainbow color scheme

‘moreland’

each channel is displayed using the moreland color scheme

‘nebulae’

each channel is displayed using the nebulae color scheme

‘fire’

each channel is displayed using the fire color scheme

‘fiery’

each channel is displayed using the fiery color scheme

‘fruit’

each channel is displayed using the fruit color scheme

‘cool’

each channel is displayed using the cool color scheme

Default value is ‘intensity’.

scale

Specify scale used for calculating intensity color values.

It accepts the following values:

‘lin’

linear

‘sqrt’

square root, default

‘cbrt’

cubic root

‘log’

logarithmic

‘4thrt’

4th root

‘5thrt’

5th root

Default value is ‘log’.

saturation

Set saturation modifier for displayed colors. Negative values provide alternative color scheme. 0 is
no saturation at all. Saturation must be in [-10.0, 10.0] range. Default value is 1.

win_func

Set window function.

It accepts the following values:

‘rect’
‘bartlett’
‘hann’
‘hanning’
‘hamming’
‘blackman’
‘welch’
‘flattop’
‘bharris’
‘bnuttall’
‘bhann’
‘sine’

‘nuttall’
‘lanczos’
‘gauss’
‘tukey’
‘dolph’
‘cauchy’
‘parzen’
‘poisson’

Default value is hann.

orientation

Set orientation of time vs frequency axis. Can be vertical or horizontal. Default is
vertical.

gain

Set scale gain for calculating intensity color values. Default value is 1.

legend

Draw time and frequency axes and legends. Default is enabled.

rotation

Set color rotation, must be in [-1.0, 1.0] range. Default value is 0.

13.21.1 Examples# TOC

Extract an audio spectrogram of a whole audio track in a 1024x1024 picture using ffmpeg:

ffmpeg -i audio.flac -lavfi showspectrumpic=s=1024x1024 spectrogram.png

13.22 showvolume# TOC

Convert input audio volume to a video output.

The filter accepts the following options:

rate, r

Set video rate.

b

Set border width, allowed range is [0, 5]. Default is 1.

w

Set channel width, allowed range is [80, 8192]. Default is 400.

h

Set channel height, allowed range is [1, 900]. Default is 20.

f

Set fade, allowed range is [0, 1]. Default is 0.95.

c

Set volume color expression.

The expression can use the following variables:

VOLUME

Current max volume of channel in dB.

PEAK

Current peak.

CHANNEL

Current channel number, starting from 0.

t

If set, displays channel names. Default is enabled.

v

If set, displays volume values. Default is enabled.

o

Set orientation, can be horizontal: h or vertical: v, default is h.

s

Set step size, allowed range is [0, 5]. Default is 0, which means step is disabled.

p

Set background opacity, allowed range is [0, 1]. Default is 0.

m

Set metering mode, can be peak: p or rms: r, default is p.

ds

Set display scale, can be linear: lin or log: log, default is lin.

dm

In second. If set to > 0., display a line for the max level in the previous seconds. default is disabled:
0.

dmc

The color of the max line. Use when dm option is set to > 0. default is: orange

13.23 showwaves# TOC

Convert input audio to a video output, representing the samples waves.

The filter accepts the following options:

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 600x240.

mode

Set display mode.

Available values are:

‘point’

Draw a point for each sample.

‘line’

Draw a vertical line for each sample.

‘p2p’

Draw a point for each sample and a line between them.

‘cline’

Draw a centered vertical line for each sample.

Default value is point.

n

Set the number of samples which are printed on the same column. A larger value will decrease the
frame rate. Must be a positive integer. This option can be set only if the value for rate is not explicitly
specified.

rate, r

Set the (approximate) output frame rate. This is done by setting the option n. Default value is "25".

split_channels

Set if channels should be drawn separately or overlap. Default value is 0.

colors

Set colors separated by ’|’ which are going to be used for drawing of each channel.

scale

Set amplitude scale.

Available values are:

‘lin’

Linear.

‘log’

Logarithmic.

‘sqrt’

Square root.

‘cbrt’

Cubic root.

Default is linear.

draw

Set the draw mode. This is mostly useful to set for high n.

Available values are:

‘scale’

Scale pixel values for each drawn sample.

‘full’

Draw every sample directly.

Default value is scale.

13.23.1 Examples# TOC

Output the input file audio and the corresponding video representation at the same time:

amovie=a.mp3,asplit[out0],showwaves[out1]

Create a synthetic signal and show it with showwaves, forcing a frame rate of 30 frames per second:

aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]

13.24 showwavespic# TOC

Convert input audio to a single video frame, representing the samples waves.

The filter accepts the following options:

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 600x240.

split_channels

Set if channels should be drawn separately or overlap. Default value is 0.

colors

Set colors separated by ’|’ which are going to be used for drawing of each channel.

scale

Set amplitude scale.

Available values are:

‘lin’

Linear.

‘log’

Logarithmic.

‘sqrt’

Square root.

‘cbrt’

Cubic root.

Default is linear.

13.24.1 Examples# TOC

Extract a channel split representation of the wave form of a whole audio track in a 1024x800 picture
using ffmpeg:

ffmpeg -i audio.flac -lavfi showwavespic=split_channels=1:s=1024x800 waveform.png

13.25 sidedata, asidedata# TOC

Delete frame side data, or select frames based on it.

This filter accepts the following options:

mode

Set mode of operation of the filter.

Can be one of the following:

‘select’

Select every frame with side data of type.

‘delete’

Delete side data of type. If type is not set, delete all side data in the frame.

type

Set side data type used with all modes. Must be set for select mode. For the list of frame side data
types, refer to the AVFrameSideDataType enum in libavutil/frame.h. For example, to
choose AV_FRAME_DATA_PANSCAN side data, you must specify PANSCAN.

13.26 spectrumsynth# TOC

Sythesize audio from 2 input video spectrums, first input stream represents magnitude across time and
second represents phase across time. The filter will transform from frequency domain as displayed in
videos back to time domain as presented in audio output.

This filter is primarily created for reversing processed showspectrum filter outputs, but can synthesize
sound from other spectrograms too. But in such case results are going to be poor if the phase data is not
available, because in such cases phase data need to be recreated, usually its just recreated from random
noise. For best results use gray only output (channel color mode in showspectrum filter) and log scale
for magnitude video and lin scale for phase video. To produce phase, for 2nd video, use data option.
Inputs videos should generally use fullframe slide mode as that saves resources needed for decoding
video.

The filter accepts the following options:

sample_rate

Specify sample rate of output audio, the sample rate of audio from which spectrum was generated
may differ.

channels

Set number of channels represented in input video spectrums.

scale

Set scale which was used when generating magnitude input spectrum. Can be lin or log. Default is
log.

slide

Set slide which was used when generating inputs spectrums. Can be replace, scroll,
fullframe or rscroll. Default is fullframe.

win_func

Set window function used for resynthesis.

overlap

Set window overlap. In range [0, 1]. Default is 1, which means optimal overlap for selected
window function will be picked.

orientation

Set orientation of input videos. Can be vertical or horizontal. Default is vertical.

13.26.1 Examples# TOC

First create magnitude and phase videos from audio, assuming audio is stereo with 44100 sample
rate, then resynthesize videos back to audio with spectrumsynth:

ffmpeg -i input.flac -lavfi showspectrum=mode=separate:scale=log:overlap=0.875:color=channel:slide=fullframe:data=magnitude -an -c:v rawvideo magnitude.nut
ffmpeg -i input.flac -lavfi showspectrum=mode=separate:scale=lin:overlap=0.875:color=channel:slide=fullframe:data=phase -an -c:v rawvideo phase.nut
ffmpeg -i magnitude.nut -i phase.nut -lavfi spectrumsynth=channels=2:sample_rate=44100:win_func=hann:overlap=0.875:slide=fullframe output.flac

13.27 split, asplit# TOC

Split input into several identical outputs.

asplit works with audio input, split with video.

The filter accepts a single parameter which specifies the number of outputs. If unspecified, it defaults to 2.

13.27.1 Examples# TOC

Create two separate outputs from the same input:

[in] split [out0][out1]

To create 3 or more outputs, you need to specify the number of outputs, like in:

[in] asplit=3 [out0][out1][out2]

Create two separate outputs from the same input, one cropped and one padded:

[in] split [splitout1][splitout2];
[splitout1] crop=100:100:0:0 [cropout];
[splitout2] pad=200:200:100:100 [padout];

Create 5 copies of the input audio with ffmpeg:

ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT

13.28 zmq, azmq# TOC

Receive commands sent through a libzmq client, and forward them to filters in the filtergraph.

zmq and azmq work as a pass-through filters. zmq must be inserted between two video filters, azmq
between two audio filters. Both are capable to send messages to any filter type.

To enable these filters you need to install the libzmq library and headers and configure FFmpeg with
--enable-libzmq.

For more information about libzmq see: http://www.zeromq.org/

The zmq and azmq filters work as a libzmq server, which receives messages sent through a network
interface defined by the bind_address (or the abbreviation "b") option. Default value of this option is
tcp://localhost:5555. You may want to alter this value to your needs, but do not forget to escape
any ’:’ signs (see filtergraph escaping).

The received message must be in the form:

TARGET COMMAND [ARG]

TARGET specifies the target of the command, usually the name of the filter class or a specific filter
instance name. The default filter instance name uses the pattern
‘Parsed_<filter_name>_<index>’, but you can override this by using the ‘filter_name@id’
syntax (see Filtergraph syntax).

COMMAND specifies the name of the command for the target filter.

ARG is optional and specifies the optional argument list for the given COMMAND.

Upon reception, the message is processed and the corresponding command is injected into the filtergraph.
Depending on the result, the filter will send a reply to the client, adopting the format:

ERROR_CODE ERROR_REASON
MESSAGE

MESSAGE is optional.

13.28.1 Examples# TOC

Look at tools/zmqsend for an example of a zmq client which can be used to send commands
processed by these filters.

Consider the following filtergraph generated by ffplay. In this example the last overlay filter has an
instance name. All other filters will have default instance names.

ffplay -dumpgraph 1 -f lavfi "
color=s=100x100:c=red [l];
color=s=100x100:c=blue [r];
nullsrc=s=200x100, zmq [bg];
[bg][l] overlay [bg+l];
[bg+l][r] overlay@my=x=100 "

To change the color of the left side of the video, the following command can be used:

echo Parsed_color_0 c yellow | tools/zmqsend

To change the right side:

http://www.zeromq.org/

echo Parsed_color_1 c pink | tools/zmqsend

To change the position of the right side:

echo overlay@my x 150 | tools/zmqsend

14 Multimedia Sources# TOC
Below is a description of the currently available multimedia sources.

14.1 amovie# TOC

This is the same as movie source, except it selects an audio stream by default.

14.2 movie# TOC

Read audio and/or video stream(s) from a movie container.

It accepts the following parameters:

filename

The name of the resource to read (not necessarily a file; it can also be a device or a stream accessed
through some protocol).

format_name, f

Specifies the format assumed for the movie to read, and can be either the name of a container or an
input device. If not specified, the format is guessed from movie_name or by probing.

seek_point, sp

Specifies the seek point in seconds. The frames will be output starting from this seek point. The
parameter is evaluated with av_strtod, so the numerical value may be suffixed by an IS postfix.
The default value is "0".

streams, s

Specifies the streams to read. Several streams can be specified, separated by "+". The source will then
have as many outputs, in the same order. The syntax is explained in the (ffmpeg)"Stream specifiers"
section in the ffmpeg manual. Two special names, "dv" and "da" specify respectively the default (best
suited) video and audio stream. Default is "dv", or "da" if the filter is called as "amovie".

stream_index, si

Specifies the index of the video stream to read. If the value is -1, the most suitable video stream will
be automatically selected. The default value is "-1". Deprecated. If the filter is called "amovie", it will
select audio instead of video.

loop

Specifies how many times to read the stream in sequence. If the value is 0, the stream will be looped
infinitely. Default value is "1".

Note that when the movie is looped the source timestamps are not changed, so it will generate non
monotonically increasing timestamps.

discontinuity

Specifies the time difference between frames above which the point is considered a timestamp
discontinuity which is removed by adjusting the later timestamps.

It allows overlaying a second video on top of the main input of a filtergraph, as shown in this graph:

input -----------> deltapts0 --> overlay --> output
 ^
 |
movie --> scale--> deltapts1 -------+

14.2.1 Examples# TOC

Skip 3.2 seconds from the start of the AVI file in.avi, and overlay it on top of the input labelled "in":

movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [over];
[in] setpts=PTS-STARTPTS [main];
[main][over] overlay=16:16 [out]

Read from a video4linux2 device, and overlay it on top of the input labelled "in":

movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [over];
[in] setpts=PTS-STARTPTS [main];
[main][over] overlay=16:16 [out]

Read the first video stream and the audio stream with id 0x81 from dvd.vob; the video is connected to
the pad named "video" and the audio is connected to the pad named "audio":

movie=dvd.vob:s=v:0+#0x81 [video] [audio]

14.2.2 Commands# TOC

Both movie and amovie support the following commands:

seek

Perform seek using "av_seek_frame". The syntax is: seek stream_index|timestamp|flags

stream_index: If stream_index is -1, a default stream is selected, and timestamp is automatically
converted from AV_TIME_BASE units to the stream specific time_base.
timestamp: Timestamp in AVStream.time_base units or, if no stream is specified, in
AV_TIME_BASE units.

flags: Flags which select direction and seeking mode.
get_duration

Get movie duration in AV_TIME_BASE units.

15 See Also# TOC
ffmpeg, ffplay, ffprobe, libavfilter

16 Authors# TOC
The FFmpeg developers.

For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg), e.g. by
typing the command git log in the FFmpeg source directory, or browsing the online repository at
http://source.ffmpeg.org.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

This document was generated using makeinfo.

http://source.ffmpeg.org/
http://www.gnu.org/software/texinfo/

	FFmpeg Filters Documentation
	Table of Contents
	1 Description# TOC
	2 Filtering Introduction# TOC
	3 graph2dot# TOC
	4 Filtergraph description# TOC
	4.1 Filtergraph syntax# TOC
	4.2 Notes on filtergraph escaping# TOC

	5 Timeline editing# TOC
	6 Options for filters with several inputs (framesync)# TOC
	7 Audio Filters# TOC
	7.1 acompressor# TOC
	7.2 acontrast# TOC
	7.3 acopy# TOC
	7.4 acrossfade# TOC
	7.4.1 Examples# TOC

	7.5 acrusher# TOC
	7.6 adeclick# TOC
	7.7 adeclip# TOC
	7.8 adelay# TOC
	7.8.1 Examples# TOC

	7.9 aderivative, aintegral# TOC
	7.10 aecho# TOC
	7.10.1 Examples# TOC

	7.11 aemphasis# TOC
	7.12 aeval# TOC
	7.12.1 Examples# TOC

	7.13 afade# TOC
	7.13.1 Examples# TOC

	7.14 afftfilt# TOC
	7.14.1 Examples# TOC

	7.15 afir# TOC
	7.15.1 Examples# TOC

	7.16 aformat# TOC
	7.17 agate# TOC
	7.18 aiir# TOC
	7.18.1 Examples# TOC

	7.19 alimiter# TOC
	7.20 allpass# TOC
	7.20.1 Commands# TOC

	7.21 aloop# TOC
	7.22 amerge# TOC
	7.22.1 Examples# TOC

	7.23 amix# TOC
	7.24 anequalizer# TOC
	7.24.1 Examples# TOC
	7.24.2 Commands# TOC

	7.25 anull# TOC
	7.26 apad# TOC
	7.26.1 Examples# TOC

	7.27 aphaser# TOC
	7.28 apulsator# TOC
	7.29 aresample# TOC
	7.29.1 Examples# TOC

	7.30 areverse# TOC
	7.30.1 Examples# TOC

	7.31 asetnsamples# TOC
	7.32 asetrate# TOC
	7.33 ashowinfo# TOC
	7.34 astats# TOC
	7.35 atempo# TOC
	7.35.1 Examples# TOC

	7.36 atrim# TOC
	7.37 bandpass# TOC
	7.37.1 Commands# TOC

	7.38 bandreject# TOC
	7.38.1 Commands# TOC

	7.39 bass, lowshelf# TOC
	7.39.1 Commands# TOC

	7.40 biquad# TOC
	7.40.1 Commands# TOC

	7.41 bs2b# TOC
	7.42 channelmap# TOC
	7.42.1 Examples# TOC

	7.43 channelsplit# TOC
	7.43.1 Examples# TOC

	7.44 chorus# TOC
	7.44.1 Examples# TOC

	7.45 compand# TOC
	7.45.1 Examples# TOC

	7.46 compensationdelay# TOC
	7.47 crossfeed# TOC
	7.48 crystalizer# TOC
	7.49 dcshift# TOC
	7.50 drmeter# TOC
	7.51 dynaudnorm# TOC
	7.52 earwax# TOC
	7.53 equalizer# TOC
	7.53.1 Examples# TOC
	7.53.2 Commands# TOC

	7.54 extrastereo# TOC
	7.55 firequalizer# TOC
	7.55.1 Examples# TOC

	7.56 flanger# TOC
	7.57 haas# TOC
	7.58 hdcd# TOC
	7.59 headphone# TOC
	7.59.1 Examples# TOC

	7.60 highpass# TOC
	7.60.1 Commands# TOC

	7.61 join# TOC
	7.62 ladspa# TOC
	7.62.1 Examples# TOC
	7.62.2 Commands# TOC

	7.63 loudnorm# TOC
	7.64 lowpass# TOC
	7.64.1 Examples# TOC
	7.64.2 Commands# TOC

	7.65 lv2# TOC
	7.65.1 Examples# TOC

	7.66 mcompand# TOC
	7.67 pan# TOC
	7.67.1 Mixing examples# TOC
	7.67.2 Remapping examples# TOC

	7.68 replaygain# TOC
	7.69 resample# TOC
	7.70 rubberband# TOC
	7.71 sidechaincompress# TOC
	7.71.1 Examples# TOC

	7.72 sidechaingate# TOC
	7.73 silencedetect# TOC
	7.73.1 Examples# TOC

	7.74 silenceremove# TOC
	7.74.1 Examples# TOC

	7.75 sofalizer# TOC
	7.75.1 Examples# TOC

	7.76 stereotools# TOC
	7.76.1 Examples# TOC

	7.77 stereowiden# TOC
	7.78 superequalizer# TOC
	7.79 surround# TOC
	7.80 treble, highshelf# TOC
	7.80.1 Commands# TOC

	7.81 tremolo# TOC
	7.82 vibrato# TOC
	7.83 volume# TOC
	7.83.1 Commands# TOC
	7.83.2 Examples# TOC

	7.84 volumedetect# TOC
	7.84.1 Examples# TOC

	8 Audio Sources# TOC
	8.1 abuffer# TOC
	8.1.1 Examples# TOC

	8.2 aevalsrc# TOC
	8.2.1 Examples# TOC

	8.3 anullsrc# TOC
	8.3.1 Examples# TOC

	8.4 flite# TOC
	8.4.1 Examples# TOC

	8.5 anoisesrc# TOC
	8.5.1 Examples# TOC

	8.6 hilbert# TOC
	8.7 sine# TOC
	8.7.1 Examples# TOC

	9 Audio Sinks# TOC
	9.1 abuffersink# TOC
	9.2 anullsink# TOC

	10 Video Filters# TOC
	10.1 alphaextract# TOC
	10.2 alphamerge# TOC
	10.3 amplify# TOC
	10.4 ass# TOC
	10.5 atadenoise# TOC
	10.6 avgblur# TOC
	10.7 bbox# TOC
	10.8 bitplanenoise# TOC
	10.9 blackdetect# TOC
	10.10 blackframe# TOC
	10.11 blend, tblend# TOC
	10.11.1 Examples# TOC

	10.12 boxblur# TOC
	10.12.1 Examples# TOC

	10.13 bwdif# TOC
	10.14 chromakey# TOC
	10.14.1 Examples# TOC

	10.15 ciescope# TOC
	10.16 codecview# TOC
	10.16.1 Examples# TOC

	10.17 colorbalance# TOC
	10.17.1 Examples# TOC

	10.18 colorkey# TOC
	10.18.1 Examples# TOC

	10.19 colorlevels# TOC
	10.19.1 Examples# TOC

	10.20 colorchannelmixer# TOC
	10.20.1 Examples# TOC

	10.21 colormatrix# TOC
	10.22 colorspace# TOC
	10.23 convolution# TOC
	10.23.1 Examples# TOC

	10.24 convolve# TOC
	10.25 copy# TOC
	10.26 coreimage# TOC
	10.26.1 Examples# TOC

	10.27 crop# TOC
	10.27.1 Examples# TOC
	10.27.2 Commands# TOC

	10.28 cropdetect# TOC
	10.29 curves# TOC
	10.29.1 Examples# TOC

	10.30 datascope# TOC
	10.31 dctdnoiz# TOC
	10.31.1 Examples# TOC

	10.32 deband# TOC
	10.33 deblock# TOC
	10.33.1 Examples# TOC

	10.34 decimate# TOC
	10.35 deconvolve# TOC
	10.36 deflate# TOC
	10.37 deflicker# TOC
	10.38 dejudder# TOC
	10.39 delogo# TOC
	10.39.1 Examples# TOC

	10.40 deshake# TOC
	10.41 despill# TOC
	10.42 detelecine# TOC
	10.43 dilation# TOC
	10.44 displace# TOC
	10.44.1 Examples# TOC

	10.45 drawbox# TOC
	10.45.1 Examples# TOC

	10.46 drawgrid# TOC
	10.46.1 Examples# TOC

	10.47 drawtext# TOC
	10.47.1 Syntax# TOC
	10.47.2 Text expansion# TOC
	10.47.3 Examples# TOC

	10.48 edgedetect# TOC
	10.48.1 Examples# TOC

	10.49 eq# TOC
	10.49.1 Commands# TOC

	10.50 erosion# TOC
	10.51 extractplanes# TOC
	10.51.1 Examples# TOC

	10.52 elbg# TOC
	10.53 entropy# TOC
	10.54 fade# TOC
	10.54.1 Examples# TOC

	10.55 fftfilt# TOC
	10.55.1 Examples# TOC

	10.56 fftdnoiz# TOC
	10.57 field# TOC
	10.58 fieldhint# TOC
	10.59 fieldmatch# TOC
	10.59.1 p/c/n/u/b meaning# TOC
	10.59.1.1 p/c/n# TOC
	10.59.1.2 u/b# TOC
	10.59.2 Examples# TOC

	10.60 fieldorder# TOC
	10.61 fifo, afifo# TOC
	10.62 fillborders# TOC
	10.63 find_rect# TOC
	10.63.1 Examples# TOC

	10.64 cover_rect# TOC
	10.64.1 Examples# TOC

	10.65 floodfill# TOC
	10.66 format# TOC
	10.66.1 Examples# TOC

	10.67 fps# TOC
	10.67.1 Examples# TOC

	10.68 framepack# TOC
	10.69 framerate# TOC
	10.70 framestep# TOC
	10.71 frei0r# TOC
	10.71.1 Examples# TOC

	10.72 fspp# TOC
	10.73 gblur# TOC
	10.74 geq# TOC
	10.74.1 Examples# TOC

	10.75 gradfun# TOC
	10.75.1 Examples# TOC

	10.76 greyedge# TOC
	10.76.1 Examples# TOC

	10.77 haldclut# TOC
	10.77.1 Workflow examples# TOC
	10.77.1.1 Hald CLUT video stream# TOC
	10.77.1.2 Hald CLUT with preview# TOC

	10.78 hflip# TOC
	10.79 histeq# TOC
	10.80 histogram# TOC
	10.80.1 Examples# TOC

	10.81 hqdn3d# TOC
	10.82 hwdownload# TOC
	10.83 hwmap# TOC
	10.84 hwupload# TOC
	10.85 hwupload_cuda# TOC
	10.86 hqx# TOC
	10.87 hstack# TOC
	10.88 hue# TOC
	10.88.1 Examples# TOC
	10.88.2 Commands# TOC

	10.89 hysteresis# TOC
	10.90 idet# TOC
	10.91 il# TOC
	10.92 inflate# TOC
	10.93 interlace# TOC
	10.94 kerndeint# TOC
	10.94.1 Examples# TOC

	10.95 lenscorrection# TOC
	10.95.1 Options# TOC

	10.96 lensfun# TOC
	10.96.1 Examples# TOC

	10.97 libvmaf# TOC
	10.98 limiter# TOC
	10.99 loop# TOC
	10.100 lut3d# TOC
	10.101 lumakey# TOC
	10.102 lut, lutrgb, lutyuv# TOC
	10.102.1 Examples# TOC

	10.103 lut2, tlut2# TOC
	10.103.1 Examples# TOC

	10.104 maskedclamp# TOC
	10.105 maskedmerge# TOC
	10.106 mcdeint# TOC
	10.107 mergeplanes# TOC
	10.107.1 Examples# TOC

	10.108 mestimate# TOC
	10.109 midequalizer# TOC
	10.110 minterpolate# TOC
	10.111 mix# TOC
	10.112 mpdecimate# TOC
	10.113 negate# TOC
	10.114 nlmeans# TOC
	10.115 nnedi# TOC
	10.116 noformat# TOC
	10.116.1 Examples# TOC

	10.117 noise# TOC
	10.117.1 Examples# TOC

	10.118 normalize# TOC
	10.118.1 Examples# TOC

	10.119 null# TOC
	10.120 ocr# TOC
	10.121 ocv# TOC
	10.121.1 dilate# TOC
	10.121.2 erode# TOC
	10.121.3 smooth# TOC

	10.122 oscilloscope# TOC
	10.122.1 Examples# TOC

	10.123 overlay# TOC
	10.123.1 Commands# TOC
	10.123.2 Examples# TOC

	10.124 owdenoise# TOC
	10.125 pad# TOC
	10.125.1 Examples# TOC

	10.126 palettegen# TOC
	10.126.1 Examples# TOC

	10.127 paletteuse# TOC
	10.127.1 Examples# TOC

	10.128 perspective# TOC
	10.129 phase# TOC
	10.130 pixdesctest# TOC
	10.131 pixscope# TOC
	10.132 pp# TOC
	10.132.1 Examples# TOC

	10.133 pp7# TOC
	10.134 premultiply# TOC
	10.135 prewitt# TOC
	10.136 program_opencl# TOC
	10.137 pseudocolor# TOC
	10.137.1 Examples# TOC

	10.138 psnr# TOC
	10.139 pullup# TOC
	10.140 qp# TOC
	10.140.1 Examples# TOC

	10.141 random# TOC
	10.142 readeia608# TOC
	10.142.1 Examples# TOC

	10.143 readvitc# TOC
	10.143.1 Examples# TOC

	10.144 remap# TOC
	10.145 removegrain# TOC
	10.146 removelogo# TOC
	10.147 repeatfields# TOC
	10.148 reverse# TOC
	10.148.1 Examples# TOC

	10.149 roberts# TOC
	10.150 rotate# TOC
	10.150.1 Examples# TOC
	10.150.2 Commands# TOC

	10.151 sab# TOC
	10.152 scale# TOC
	10.152.1 Options# TOC
	10.152.2 Examples# TOC
	10.152.3 Commands# TOC

	10.153 scale_npp# TOC
	10.154 scale2ref# TOC
	10.154.1 Examples# TOC

	10.155 selectivecolor# TOC
	10.155.1 Examples# TOC

	10.156 separatefields# TOC
	10.157 setdar, setsar# TOC
	10.157.1 Examples# TOC

	10.158 setfield# TOC
	10.159 showinfo# TOC
	10.160 showpalette# TOC
	10.161 shuffleframes# TOC
	10.161.1 Examples# TOC

	10.162 shuffleplanes# TOC
	10.162.1 Examples# TOC

	10.163 signalstats# TOC
	10.163.1 Examples# TOC

	10.164 signature# TOC
	10.164.1 Examples# TOC

	10.165 smartblur# TOC
	10.166 ssim# TOC
	10.167 stereo3d# TOC
	10.167.1 Examples# TOC

	10.168 streamselect, astreamselect# TOC
	10.168.1 Commands# TOC
	10.168.2 Examples# TOC

	10.169 sobel# TOC
	10.170 spp# TOC
	10.171 sr# TOC
	10.172 subtitles# TOC
	10.173 super2xsai# TOC
	10.174 swaprect# TOC
	10.175 swapuv# TOC
	10.176 telecine# TOC
	10.177 threshold# TOC
	10.177.1 Examples# TOC

	10.178 thumbnail# TOC
	10.178.1 Examples# TOC

	10.179 tile# TOC
	10.179.1 Examples# TOC

	10.180 tinterlace# TOC
	10.181 tmix# TOC
	10.181.1 Examples# TOC

	10.182 tonemap# TOC
	10.182.1 Options# TOC

	10.183 transpose# TOC
	10.184 trim# TOC
	10.185 unpremultiply# TOC
	10.186 unsharp# TOC
	10.186.1 Examples# TOC

	10.187 uspp# TOC
	10.188 vaguedenoiser# TOC
	10.189 vectorscope# TOC
	10.190 vidstabdetect# TOC
	10.190.1 Examples# TOC

	10.191 vidstabtransform# TOC
	10.191.1 Options# TOC
	10.191.2 Examples# TOC

	10.192 vflip# TOC
	10.193 vfrdet# TOC
	10.194 vignette# TOC
	10.194.1 Expressions# TOC
	10.194.2 Examples# TOC

	10.195 vmafmotion# TOC
	10.196 vstack# TOC
	10.197 w3fdif# TOC
	10.198 waveform# TOC
	10.199 weave, doubleweave# TOC
	10.199.1 Examples# TOC

	10.200 xbr# TOC
	10.201 yadif# TOC
	10.202 zoompan# TOC
	10.202.1 Examples# TOC

	10.203 zscale# TOC
	10.203.1 Options# TOC

	11 Video Sources# TOC
	11.1 buffer# TOC
	11.2 cellauto# TOC
	11.2.1 Examples# TOC

	11.3 coreimagesrc# TOC
	11.3.1 Examples# TOC

	11.4 mandelbrot# TOC
	11.5 mptestsrc# TOC
	11.6 frei0r_src# TOC
	11.7 life# TOC
	11.7.1 Examples# TOC

	11.8 allrgb, allyuv, color, haldclutsrc, nullsrc, pal75bars, pal100bars, rgbtestsrc, smptebars, smptehdbars, testsrc, testsrc2, yuvtestsrc# TOC
	11.8.1 Examples# TOC
	11.8.2 Commands# TOC

	11.9 openclsrc# TOC

	12 Video Sinks# TOC
	12.1 buffersink# TOC
	12.2 nullsink# TOC

	13 Multimedia Filters# TOC
	13.1 abitscope# TOC
	13.2 ahistogram# TOC
	13.3 aphasemeter# TOC
	13.4 avectorscope# TOC
	13.4.1 Examples# TOC

	13.5 bench, abench# TOC
	13.5.1 Examples# TOC

	13.6 concat# TOC
	13.6.1 Examples# TOC
	13.6.2 Commands# TOC

	13.7 drawgraph, adrawgraph# TOC
	13.8 ebur128# TOC
	13.8.1 Examples# TOC

	13.9 interleave, ainterleave# TOC
	13.9.1 Examples# TOC

	13.10 metadata, ametadata# TOC
	13.10.1 Examples# TOC

	13.11 perms, aperms# TOC
	13.12 realtime, arealtime# TOC
	13.13 select, aselect# TOC
	13.13.1 Examples# TOC

	13.14 sendcmd, asendcmd# TOC
	13.14.1 Commands syntax# TOC
	13.14.2 Examples# TOC

	13.15 setpts, asetpts# TOC
	13.15.1 Examples# TOC

	13.16 setrange# TOC
	13.17 settb, asettb# TOC
	13.17.1 Examples# TOC

	13.18 showcqt# TOC
	13.18.1 Examples# TOC

	13.19 showfreqs# TOC
	13.20 showspectrum# TOC
	13.20.1 Examples# TOC

	13.21 showspectrumpic# TOC
	13.21.1 Examples# TOC

	13.22 showvolume# TOC
	13.23 showwaves# TOC
	13.23.1 Examples# TOC

	13.24 showwavespic# TOC
	13.24.1 Examples# TOC

	13.25 sidedata, asidedata# TOC
	13.26 spectrumsynth# TOC
	13.26.1 Examples# TOC

	13.27 split, asplit# TOC
	13.27.1 Examples# TOC

	13.28 zmq, azmq# TOC
	13.28.1 Examples# TOC

	14 Multimedia Sources# TOC
	14.1 amovie# TOC
	14.2 movie# TOC
	14.2.1 Examples# TOC
	14.2.2 Commands# TOC

	15 See Also# TOC
	16 Authors# TOC

