
ffmpeg Documentation

Table of Contents
1 Synopsis
2 Description
3 Detailed description

3.1 Filtering
3.1.1 Simple filtergraphs
3.1.2 Complex filtergraphs

3.2 Stream copy
4 Stream selection

4.1 Description
4.1.1 Automatic stream selection
4.1.2 Manual stream selection
4.1.3 Complex filtergraphs
4.1.4 Stream handling

4.2 Examples
5 Options

5.1 Stream specifiers
5.2 Generic options
5.3 AVOptions
5.4 Main options
5.5 Video Options
5.6 Advanced Video options
5.7 Audio Options
5.8 Advanced Audio options
5.9 Subtitle options
5.10 Advanced Subtitle options
5.11 Advanced options
5.12 Preset files

5.12.1 ffpreset files
5.12.2 avpreset files

6 Examples
6.1 Video and Audio grabbing
6.2 X11 grabbing
6.3 Video and Audio file format conversion

7 See Also
8 Authors

1 Synopsis# TOC
ffmpeg [global_options] {[input_file_options] -i input_url} ... {[output_file_options] output_url}
...

2 Description# TOC
ffmpeg is a very fast video and audio converter that can also grab from a live audio/video source. It can
also convert between arbitrary sample rates and resize video on the fly with a high quality polyphase filter.

ffmpeg reads from an arbitrary number of input "files" (which can be regular files, pipes, network
streams, grabbing devices, etc.), specified by the -i option, and writes to an arbitrary number of output
"files", which are specified by a plain output url. Anything found on the command line which cannot be
interpreted as an option is considered to be an output url.

Each input or output url can, in principle, contain any number of streams of different types
(video/audio/subtitle/attachment/data). The allowed number and/or types of streams may be limited by the
container format. Selecting which streams from which inputs will go into which output is either done
automatically or with the -map option (see the Stream selection chapter).

To refer to input files in options, you must use their indices (0-based). E.g. the first input file is 0, the
second is 1, etc. Similarly, streams within a file are referred to by their indices. E.g. 2:3 refers to the
fourth stream in the third input file. Also see the Stream specifiers chapter.

As a general rule, options are applied to the next specified file. Therefore, order is important, and you can
have the same option on the command line multiple times. Each occurrence is then applied to the next
input or output file. Exceptions from this rule are the global options (e.g. verbosity level), which should be
specified first.

Do not mix input and output files – first specify all input files, then all output files. Also do not mix
options which belong to different files. All options apply ONLY to the next input or output file and are
reset between files.

To set the video bitrate of the output file to 64 kbit/s:

ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi

To force the frame rate of the output file to 24 fps:

ffmpeg -i input.avi -r 24 output.avi

To force the frame rate of the input file (valid for raw formats only) to 1 fps and the frame rate of the
output file to 24 fps:

ffmpeg -r 1 -i input.m2v -r 24 output.avi

The format option may be needed for raw input files.

3 Detailed description# TOC
The transcoding process in ffmpeg for each output can be described by the following diagram:

 _______ ______________
| | | |
| input | demuxer | encoded data | decoder
| file | ---------> | packets | -----+
|_______| |______________| |
 v

 | |
 | decoded |
 | frames |
 |_________|
 ________ ______________ |
| | | | |
| output | <-------- | encoded data | <----+
| file | muxer | packets | encoder
|________| |______________|

ffmpeg calls the libavformat library (containing demuxers) to read input files and get packets containing
encoded data from them. When there are multiple input files, ffmpeg tries to keep them synchronized by
tracking lowest timestamp on any active input stream.

Encoded packets are then passed to the decoder (unless streamcopy is selected for the stream, see further
for a description). The decoder produces uncompressed frames (raw video/PCM audio/...) which can be
processed further by filtering (see next section). After filtering, the frames are passed to the encoder,
which encodes them and outputs encoded packets. Finally those are passed to the muxer, which writes the
encoded packets to the output file.

3.1 Filtering# TOC

Before encoding, ffmpeg can process raw audio and video frames using filters from the libavfilter
library. Several chained filters form a filter graph. ffmpeg distinguishes between two types of
filtergraphs: simple and complex.

3.1.1 Simple filtergraphs# TOC

Simple filtergraphs are those that have exactly one input and output, both of the same type. In the above
diagram they can be represented by simply inserting an additional step between decoding and encoding:

 _________ ______________
decoded		encoded data	
frames	\ _	packets	
_________	\ /		______________
 \ __________ /
 simple _\|| | / encoder
 filtergraph | filtered |/
 | frames |
 |__________|

Simple filtergraphs are configured with the per-stream -filter option (with -vf and -af aliases for
video and audio respectively). A simple filtergraph for video can look for example like this:

 _______ _____________ _______ ________
input	--->	deinterlace	--->	scale	--->	output
_______		_____________		_______		________

Note that some filters change frame properties but not frame contents. E.g. the fps filter in the example
above changes number of frames, but does not touch the frame contents. Another example is the setpts
filter, which only sets timestamps and otherwise passes the frames unchanged.

3.1.2 Complex filtergraphs# TOC

Complex filtergraphs are those which cannot be described as simply a linear processing chain applied to
one stream. This is the case, for example, when the graph has more than one input and/or output, or when
output stream type is different from input. They can be represented with the following diagram:

| |
| input 0 |\ __________
|_________| \ | |
 \ _________ /| output 0 |
 \ | | / |__________|
 _________ \| complex | /
| | | |/
| input 1 |---->| filter |\
|_________| | | \ __________
 /| graph | \ | |
 / | | \| output 1 |
 _________ / |_________| |__________|
| | /
| input 2 |/
|_________|

Complex filtergraphs are configured with the -filter_complex option. Note that this option is global,
since a complex filtergraph, by its nature, cannot be unambiguously associated with a single stream or file.

The -lavfi option is equivalent to -filter_complex.

A trivial example of a complex filtergraph is the overlay filter, which has two video inputs and one
video output, containing one video overlaid on top of the other. Its audio counterpart is the amix filter.

3.2 Stream copy# TOC

Stream copy is a mode selected by supplying the copy parameter to the -codec option. It makes
ffmpeg omit the decoding and encoding step for the specified stream, so it does only demuxing and
muxing. It is useful for changing the container format or modifying container-level metadata. The diagram
above will, in this case, simplify to this:

 _______ ______________ ________
input	demuxer	encoded data	muxer	output
file	--------->	packets	------->	file
_______		______________		________

Since there is no decoding or encoding, it is very fast and there is no quality loss. However, it might not
work in some cases because of many factors. Applying filters is obviously also impossible, since filters
work on uncompressed data.

4 Stream selection# TOC
ffmpeg provides the -map option for manual control of stream selection in each output file. Users can
skip -map and let ffmpeg perform automatic stream selection as described below. The -vn / -an /
-sn / -dn options can be used to skip inclusion of video, audio, subtitle and data streams respectively,
whether manually mapped or automatically selected, except for those streams which are outputs of
complex filtergraphs.

4.1 Description# TOC

The sub-sections that follow describe the various rules that are involved in stream selection. The examples
that follow next show how these rules are applied in practice.

While every effort is made to accurately reflect the behavior of the program, FFmpeg is under continuous
development and the code may have changed since the time of this writing.

4.1.1 Automatic stream selection# TOC

In the absence of any map options for a particular output file, ffmpeg inspects the output format to check
which type of streams can be included in it, viz. video, audio and/or subtitles. For each acceptable stream
type, ffmpeg will pick one stream, when available, from among all the inputs.

It will select that stream based upon the following criteria:

for video, it is the stream with the highest resolution,
for audio, it is the stream with the most channels,
for subtitles, it is the first subtitle stream found but there’s a caveat. The output format’s default
subtitle encoder can be either text-based or image-based, and only a subtitle stream of the same type

will be chosen.

In the case where several streams of the same type rate equally, the stream with the lowest index is chosen.

Data or attachment streams are not automatically selected and can only be included using -map.

4.1.2 Manual stream selection# TOC

When -map is used, only user-mapped streams are included in that output file, with one possible
exception for filtergraph outputs described below.

4.1.3 Complex filtergraphs# TOC

If there are any complex filtergraph output streams with unlabeled pads, they will be added to the first
output file. This will lead to a fatal error if the stream type is not supported by the output format. In the
absence of the map option, the inclusion of these streams leads to the automatic stream selection of their
types being skipped. If map options are present, these filtergraph streams are included in addition to the
mapped streams.

Complex filtergraph output streams with labeled pads must be mapped once and exactly once.

4.1.4 Stream handling# TOC

Stream handling is independent of stream selection, with an exception for subtitles described below.
Stream handling is set via the -codec option addressed to streams within a specific output file. In
particular, codec options are applied by ffmpeg after the stream selection process and thus do not influence
the latter. If no -codec option is specified for a stream type, ffmpeg will select the default encoder
registered by the output file muxer.

An exception exists for subtitles. If a subtitle encoder is specified for an output file, the first subtitle
stream found of any type, text or image, will be included. ffmpeg does not validate if the specified encoder
can convert the selected stream or if the converted stream is acceptable within the output format. This
applies generally as well: when the user sets an encoder manually, the stream selection process cannot
check if the encoded stream can be muxed into the output file. If it cannot, ffmpeg will abort and all
output files will fail to be processed.

4.2 Examples# TOC

The following examples illustrate the behavior, quirks and limitations of ffmpeg’s stream selection
methods.

They assume the following three input files.

input file ’A.avi’
 stream 0: video 640x360
 stream 1: audio 2 channels

input file ’B.mp4’
 stream 0: video 1920x1080

 stream 1: audio 2 channels
 stream 2: subtitles (text)
 stream 3: audio 5.1 channels
 stream 4: subtitles (text)

input file ’C.mkv’
 stream 0: video 1280x720
 stream 1: audio 2 channels
 stream 2: subtitles (image)

Example: automatic stream selection

ffmpeg -i A.avi -i B.mp4 out1.mkv out2.wav -map 1:a -c:a copy out3.mov

There are three output files specified, and for the first two, no -map options are set, so ffmpeg will select
streams for these two files automatically.

out1.mkv is a Matroska container file and accepts video, audio and subtitle streams, so ffmpeg will try
to select one of each type.
For video, it will select stream 0 from B.mp4, which has the highest resolution among all the input
video streams.
For audio, it will select stream 3 from B.mp4, since it has the greatest number of channels.
For subtitles, it will select stream 2 from B.mp4, which is the first subtitle stream from among A.avi
and B.mp4.

out2.wav accepts only audio streams, so only stream 3 from B.mp4 is selected.

For out3.mov, since a -map option is set, no automatic stream selection will occur. The -map 1:a
option will select all audio streams from the second input B.mp4. No other streams will be included in
this output file.

For the first two outputs, all included streams will be transcoded. The encoders chosen will be the default
ones registered by each output format, which may not match the codec of the selected input streams.

For the third output, codec option for audio streams has been set to copy, so no
decoding-filtering-encoding operations will occur, or can occur. Packets of selected streams shall be
conveyed from the input file and muxed within the output file.

Example: automatic subtitles selection

ffmpeg -i C.mkv out1.mkv -c:s dvdsub -an out2.mkv

Although out1.mkv is a Matroska container file which accepts subtitle streams, only a video and audio
stream shall be selected. The subtitle stream of C.mkv is image-based and the default subtitle encoder of
the Matroska muxer is text-based, so a transcode operation for the subtitles is expected to fail and hence
the stream isn’t selected. However, in out2.mkv, a subtitle encoder is specified in the command and so,
the subtitle stream is selected, in addition to the video stream. The presence of -an disables audio stream
selection for out2.mkv.

Example: unlabeled filtergraph outputs

ffmpeg -i A.avi -i C.mkv -i B.mp4 -filter_complex "overlay" out1.mp4 out2.srt

A filtergraph is setup here using the -filter_complex option and consists of a single video filter. The
overlay filter requires exactly two video inputs, but none are specified, so the first two available video
streams are used, those of A.avi and C.mkv. The output pad of the filter has no label and so is sent to
the first output file out1.mp4. Due to this, automatic selection of the video stream is skipped, which
would have selected the stream in B.mp4. The audio stream with most channels viz. stream 3 in
B.mp4, is chosen automatically. No subtitle stream is chosen however, since the MP4 format has no
default subtitle encoder registered, and the user hasn’t specified a subtitle encoder.

The 2nd output file, out2.srt, only accepts text-based subtitle streams. So, even though the first
subtitle stream available belongs to C.mkv, it is image-based and hence skipped. The selected stream,
stream 2 in B.mp4, is the first text-based subtitle stream.

Example: labeled filtergraph outputs

ffmpeg -i A.avi -i B.mp4 -i C.mkv -filter_complex "[1:v]hue=s=0[outv];overlay;aresample" \
 -map ’[outv]’ -an out1.mp4 \
 out2.mkv \
 -map ’[outv]’ -map 1:a:0 out3.mkv

The above command will fail, as the output pad labelled [outv] has been mapped twice. None of the
output files shall be processed.

ffmpeg -i A.avi -i B.mp4 -i C.mkv -filter_complex "[1:v]hue=s=0[outv];overlay;aresample" \
 -an out1.mp4 \
 out2.mkv \
 -map 1:a:0 out3.mkv

This command above will also fail as the hue filter output has a label, [outv], and hasn’t been mapped
anywhere.

The command should be modified as follows,

ffmpeg -i A.avi -i B.mp4 -i C.mkv -filter_complex "[1:v]hue=s=0,split=2[outv1][outv2];overlay;aresample" \
 -map ’[outv1]’ -an out1.mp4 \
 out2.mkv \
 -map ’[outv2]’ -map 1:a:0 out3.mkv

The video stream from B.mp4 is sent to the hue filter, whose output is cloned once using the split filter,
and both outputs labelled. Then a copy each is mapped to the first and third output files.

The overlay filter, requiring two video inputs, uses the first two unused video streams. Those are the
streams from A.avi and C.mkv. The overlay output isn’t labelled, so it is sent to the first output file
out1.mp4, regardless of the presence of the -map option.

The aresample filter is sent the first unused audio stream, that of A.avi. Since this filter output is also
unlabelled, it too is mapped to the first output file. The presence of -an only suppresses automatic or
manual stream selection of audio streams, not outputs sent from filtergraphs. Both these mapped streams
shall be ordered before the mapped stream in out1.mp4.

The video, audio and subtitle streams mapped to out2.mkv are entirely determined by automatic stream
selection.

out3.mkv consists of the cloned video output from the hue filter and the first audio stream from B.mp4.

5 Options# TOC
All the numerical options, if not specified otherwise, accept a string representing a number as input, which
may be followed by one of the SI unit prefixes, for example: ’K’, ’M’, or ’G’.

If ’i’ is appended to the SI unit prefix, the complete prefix will be interpreted as a unit prefix for binary
multiples, which are based on powers of 1024 instead of powers of 1000. Appending ’B’ to the SI unit
prefix multiplies the value by 8. This allows using, for example: ’KB’, ’MiB’, ’G’ and ’B’ as number
suffixes.

Options which do not take arguments are boolean options, and set the corresponding value to true. They
can be set to false by prefixing the option name with "no". For example using "-nofoo" will set the boolean
option with name "foo" to false.

5.1 Stream specifiers# TOC

Some options are applied per-stream, e.g. bitrate or codec. Stream specifiers are used to precisely specify
which stream(s) a given option belongs to.

A stream specifier is a string generally appended to the option name and separated from it by a colon. E.g.
-codec:a:1 ac3 contains the a:1 stream specifier, which matches the second audio stream.
Therefore, it would select the ac3 codec for the second audio stream.

A stream specifier can match several streams, so that the option is applied to all of them. E.g. the stream
specifier in -b:a 128k matches all audio streams.

An empty stream specifier matches all streams. For example, -codec copy or -codec: copy would
copy all the streams without reencoding.

Possible forms of stream specifiers are:

stream_index

Matches the stream with this index. E.g. -threads:1 4 would set the thread count for the second
stream to 4.

stream_type[:stream_index]

stream_type is one of following: ’v’ or ’V’ for video, ’a’ for audio, ’s’ for subtitle, ’d’ for data, and
’t’ for attachments. ’v’ matches all video streams, ’V’ only matches video streams which are not
attached pictures, video thumbnails or cover arts. If stream_index is given, then it matches stream
number stream_index of this type. Otherwise, it matches all streams of this type.

p:program_id[:stream_index] or
p:program_id[:stream_type[:stream_index]] or

p:program_id:m:key[:value] In first version, if stream_index is given, then it matches the stream with
number stream_index in the program with the id program_id. Otherwise, it matches all streams in the
program. In the second version, stream_type is one of following: ’v’ for video, ’a’ for audio, ’s’ for
subtitle, ’d’ for data. If stream_index is also given, then it matches stream number stream_index of
this type in the program with the id program_id. Otherwise, if only stream_type is given, it matches
all streams of this type in the program with the id program_id. In the third version matches streams in
the program with the id program_id with the metadata tag key having the specified value. If value is
not given, matches streams that contain the given tag with any value.

#stream_id or i:stream_id

Match the stream by stream id (e.g. PID in MPEG-TS container).

m:key[:value]

Matches streams with the metadata tag key having the specified value. If value is not given, matches
streams that contain the given tag with any value.

u

Matches streams with usable configuration, the codec must be defined and the essential information
such as video dimension or audio sample rate must be present.

Note that in ffmpeg, matching by metadata will only work properly for input files.

5.2 Generic options# TOC

These options are shared amongst the ff* tools.

-L

Show license.

-h, -?, -help, --help [arg]

Show help. An optional parameter may be specified to print help about a specific item. If no
argument is specified, only basic (non advanced) tool options are shown.

Possible values of arg are:

long

Print advanced tool options in addition to the basic tool options.

full

Print complete list of options, including shared and private options for encoders, decoders,
demuxers, muxers, filters, etc.

decoder=decoder_name

Print detailed information about the decoder named decoder_name. Use the -decoders option
to get a list of all decoders.

encoder=encoder_name

Print detailed information about the encoder named encoder_name. Use the -encoders option
to get a list of all encoders.

demuxer=demuxer_name

Print detailed information about the demuxer named demuxer_name. Use the -formats option
to get a list of all demuxers and muxers.

muxer=muxer_name

Print detailed information about the muxer named muxer_name. Use the -formats option to
get a list of all muxers and demuxers.

filter=filter_name

Print detailed information about the filter name filter_name. Use the -filters option to get a
list of all filters.

-version

Show version.

-formats

Show available formats (including devices).

-demuxers

Show available demuxers.

-muxers

Show available muxers.

-devices

Show available devices.

-codecs

Show all codecs known to libavcodec.

Note that the term ’codec’ is used throughout this documentation as a shortcut for what is more
correctly called a media bitstream format.

-decoders

Show available decoders.

-encoders

Show all available encoders.

-bsfs

Show available bitstream filters.

-protocols

Show available protocols.

-filters

Show available libavfilter filters.

-pix_fmts

Show available pixel formats.

-sample_fmts

Show available sample formats.

-layouts

Show channel names and standard channel layouts.

-colors

Show recognized color names.

-sources device[,opt1=val1[,opt2=val2]...]

Show autodetected sources of the input device. Some devices may provide system-dependent source
names that cannot be autodetected. The returned list cannot be assumed to be always complete.

ffmpeg -sources pulse,server=192.168.0.4

-sinks device[,opt1=val1[,opt2=val2]...]

Show autodetected sinks of the output device. Some devices may provide system-dependent sink
names that cannot be autodetected. The returned list cannot be assumed to be always complete.

ffmpeg -sinks pulse,server=192.168.0.4

-loglevel [flags+]loglevel | -v [flags+]loglevel

Set logging level and flags used by the library.

The optional flags prefix can consist of the following values:

‘repeat’

Indicates that repeated log output should not be compressed to the first line and the "Last
message repeated n times" line will be omitted.

‘level’

Indicates that log output should add a [level] prefix to each message line. This can be used
as an alternative to log coloring, e.g. when dumping the log to file.

Flags can also be used alone by adding a ’+’/’-’ prefix to set/reset a single flag without affecting other
flags or changing loglevel. When setting both flags and loglevel, a ’+’ separator is expected between
the last flags value and before loglevel.

loglevel is a string or a number containing one of the following values:

‘quiet, -8’

Show nothing at all; be silent.

‘panic, 0’

Only show fatal errors which could lead the process to crash, such as an assertion failure. This is
not currently used for anything.

‘fatal, 8’

Only show fatal errors. These are errors after which the process absolutely cannot continue.

‘error, 16’

Show all errors, including ones which can be recovered from.

‘warning, 24’

Show all warnings and errors. Any message related to possibly incorrect or unexpected events
will be shown.

‘info, 32’

Show informative messages during processing. This is in addition to warnings and errors. This is
the default value.

‘verbose, 40’

Same as info, except more verbose.

‘debug, 48’

Show everything, including debugging information.

‘trace, 56’

For example to enable repeated log output, add the level prefix, and set loglevel to verbose:

ffmpeg -loglevel repeat+level+verbose -i input output

Another example that enables repeated log output without affecting current state of level prefix
flag or loglevel:

ffmpeg [...] -loglevel +repeat

By default the program logs to stderr. If coloring is supported by the terminal, colors are used to mark
errors and warnings. Log coloring can be disabled setting the environment variable
AV_LOG_FORCE_NOCOLOR or NO_COLOR, or can be forced setting the environment variable
AV_LOG_FORCE_COLOR. The use of the environment variable NO_COLOR is deprecated and will
be dropped in a future FFmpeg version.

-report

Dump full command line and console output to a file named program-YYYYMMDD-HHMMSS.log
in the current directory. This file can be useful for bug reports. It also implies -loglevel
verbose.

Setting the environment variable FFREPORT to any value has the same effect. If the value is a
’:’-separated key=value sequence, these options will affect the report; option values must be escaped
if they contain special characters or the options delimiter ’:’ (see the “Quoting and escaping” section
in the ffmpeg-utils manual).

The following options are recognized:

file

set the file name to use for the report; %p is expanded to the name of the program, %t is
expanded to a timestamp, %% is expanded to a plain %

level

set the log verbosity level using a numerical value (see -loglevel).

For example, to output a report to a file named ffreport.log using a log level of 32 (alias for
log level info):

FFREPORT=file=ffreport.log:level=32 ffmpeg -i input output

Errors in parsing the environment variable are not fatal, and will not appear in the report.

-hide_banner

Suppress printing banner.

All FFmpeg tools will normally show a copyright notice, build options and library versions. This
option can be used to suppress printing this information.

-cpuflags flags (global)

Allows setting and clearing cpu flags. This option is intended for testing. Do not use it unless you
know what you’re doing.

ffmpeg -cpuflags -sse+mmx ...
ffmpeg -cpuflags mmx ...
ffmpeg -cpuflags 0 ...

Possible flags for this option are:

‘x86’
‘mmx’
‘mmxext’
‘sse’
‘sse2’
‘sse2slow’
‘sse3’
‘sse3slow’
‘ssse3’
‘atom’
‘sse4.1’
‘sse4.2’
‘avx’
‘avx2’
‘xop’
‘fma3’

‘fma4’
‘3dnow’
‘3dnowext’
‘bmi1’
‘bmi2’
‘cmov’

‘ARM’
‘armv5te’
‘armv6’
‘armv6t2’
‘vfp’
‘vfpv3’
‘neon’
‘setend’

‘AArch64’
‘armv8’
‘vfp’
‘neon’

‘PowerPC’
‘altivec’

‘Specific Processors’
‘pentium2’
‘pentium3’
‘pentium4’
‘k6’
‘k62’
‘athlon’
‘athlonxp’
‘k8’

5.3 AVOptions# TOC

These options are provided directly by the libavformat, libavdevice and libavcodec libraries. To see the list
of available AVOptions, use the -help option. They are separated into two categories:

generic

These options can be set for any container, codec or device. Generic options are listed under
AVFormatContext options for containers/devices and under AVCodecContext options for codecs.

private

These options are specific to the given container, device or codec. Private options are listed under
their corresponding containers/devices/codecs.

For example to write an ID3v2.3 header instead of a default ID3v2.4 to an MP3 file, use the
id3v2_version private option of the MP3 muxer:

ffmpeg -i input.flac -id3v2_version 3 out.mp3

All codec AVOptions are per-stream, and thus a stream specifier should be attached to them.

Note: the -nooption syntax cannot be used for boolean AVOptions, use -option 0/-option 1.

Note: the old undocumented way of specifying per-stream AVOptions by prepending v/a/s to the options
name is now obsolete and will be removed soon.

5.4 Main options# TOC

-f fmt (input/output)

Force input or output file format. The format is normally auto detected for input files and guessed
from the file extension for output files, so this option is not needed in most cases.

-i url (input)

input file url

-y (global)

Overwrite output files without asking.

-n (global)

Do not overwrite output files, and exit immediately if a specified output file already exists.

-stream_loop number (input)

Set number of times input stream shall be looped. Loop 0 means no loop, loop -1 means infinite loop.

-c[:stream_specifier] codec (input/output,per-stream)
-codec[:stream_specifier] codec (input/output,per-stream)

Select an encoder (when used before an output file) or a decoder (when used before an input file) for
one or more streams. codec is the name of a decoder/encoder or a special value copy (output only) to
indicate that the stream is not to be re-encoded.

For example

ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT

encodes all video streams with libx264 and copies all audio streams.

For each stream, the last matching c option is applied, so

ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT

will copy all the streams except the second video, which will be encoded with libx264, and the 138th
audio, which will be encoded with libvorbis.

-t duration (input/output)

When used as an input option (before -i), limit the duration of data read from the input file.

When used as an output option (before an output url), stop writing the output after its duration
reaches duration.

duration must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

-to and -t are mutually exclusive and -t has priority.

-to position (input/output)

Stop writing the output or reading the input at position. position must be a time duration
specification, see (ffmpeg-utils)the Time duration section in the ffmpeg-utils(1) manual.

-to and -t are mutually exclusive and -t has priority.

-fs limit_size (output)

Set the file size limit, expressed in bytes. No further chunk of bytes is written after the limit is
exceeded. The size of the output file is slightly more than the requested file size.

-ss position (input/output)

When used as an input option (before -i), seeks in this input file to position. Note that in most
formats it is not possible to seek exactly, so ffmpeg will seek to the closest seek point before
position. When transcoding and -accurate_seek is enabled (the default), this extra segment
between the seek point and position will be decoded and discarded. When doing stream copy or when
-noaccurate_seek is used, it will be preserved.

When used as an output option (before an output url), decodes but discards input until the timestamps
reach position.

position must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

-sseof position (input)

Like the -ss option but relative to the "end of file". That is negative values are earlier in the file, 0 is
at EOF.

-itsoffset offset (input)

Set the input time offset.

offset must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

The offset is added to the timestamps of the input files. Specifying a positive offset means that the
corresponding streams are delayed by the time duration specified in offset.

-timestamp date (output)

Set the recording timestamp in the container.

date must be a date specification, see (ffmpeg-utils)the Date section in the ffmpeg-utils(1) manual.

-metadata[:metadata_specifier] key=value (output,per-metadata)

Set a metadata key/value pair.

An optional metadata_specifier may be given to set metadata on streams, chapters or programs. See
-map_metadata documentation for details.

This option overrides metadata set with -map_metadata. It is also possible to delete metadata by
using an empty value.

For example, for setting the title in the output file:

ffmpeg -i in.avi -metadata title="my title" out.flv

To set the language of the first audio stream:

ffmpeg -i INPUT -metadata:s:a:0 language=eng OUTPUT

-disposition[:stream_specifier] value (output,per-stream)

Sets the disposition for a stream.

This option overrides the disposition copied from the input stream. It is also possible to delete the
disposition by setting it to 0.

The following dispositions are recognized:

default
dub

original
comment
lyrics
karaoke
forced
hearing_impaired
visual_impaired
clean_effects
attached_pic
captions
descriptions
dependent
metadata

For example, to make the second audio stream the default stream:

ffmpeg -i in.mkv -c copy -disposition:a:1 default out.mkv

To make the second subtitle stream the default stream and remove the default disposition from the
first subtitle stream:

ffmpeg -i in.mkv -c copy -disposition:s:0 0 -disposition:s:1 default out.mkv

To add an embedded cover/thumbnail:

ffmpeg -i in.mp4 -i IMAGE -map 0 -map 1 -c copy -c:v:1 png -disposition:v:1 attached_pic out.mp4

Not all muxers support embedded thumbnails, and those who do, only support a few formats, like
JPEG or PNG.

-program
[title=title:][program_num=program_num:]st=stream[:st=stream...]
(output)

Creates a program with the specified title, program_num and adds the specified stream(s) to it.

-target type (output)

Specify target file type (vcd, svcd, dvd, dv, dv50). type may be prefixed with pal-, ntsc- or
film- to use the corresponding standard. All the format options (bitrate, codecs, buffer sizes) are
then set automatically. You can just type:

ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg

Nevertheless you can specify additional options as long as you know they do not conflict with the
standard, as in:

ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg

-dn (output)

Disable data recording. For full manual control see the -map option.

-dframes number (output)

Set the number of data frames to output. This is an obsolete alias for -frames:d, which you should
use instead.

-frames[:stream_specifier] framecount (output,per-stream)

Stop writing to the stream after framecount frames.

-q[:stream_specifier] q (output,per-stream)
-qscale[:stream_specifier] q (output,per-stream)

Use fixed quality scale (VBR). The meaning of q/qscale is codec-dependent. If qscale is used without
a stream_specifier then it applies only to the video stream, this is to maintain compatibility with
previous behavior and as specifying the same codec specific value to 2 different codecs that is audio
and video generally is not what is intended when no stream_specifier is used.

-filter[:stream_specifier] filtergraph (output,per-stream)

Create the filtergraph specified by filtergraph and use it to filter the stream.

filtergraph is a description of the filtergraph to apply to the stream, and must have a single input and
a single output of the same type of the stream. In the filtergraph, the input is associated to the label
in, and the output to the label out. See the ffmpeg-filters manual for more information about the
filtergraph syntax.

See the -filter_complex option if you want to create filtergraphs with multiple inputs and/or outputs.

-filter_script[:stream_specifier] filename (output,per-stream)

This option is similar to -filter, the only difference is that its argument is the name of the file
from which a filtergraph description is to be read.

-filter_threads nb_threads (global)

Defines how many threads are used to process a filter pipeline. Each pipeline will produce a thread
pool with this many threads available for parallel processing. The default is the number of available
CPUs.

-pre[:stream_specifier] preset_name (output,per-stream)

Specify the preset for matching stream(s).

-stats (global)

Print encoding progress/statistics. It is on by default, to explicitly disable it you need to specify
-nostats.

-progress url (global)

Send program-friendly progress information to url.

Progress information is written approximately every second and at the end of the encoding process. It
is made of "key=value" lines. key consists of only alphanumeric characters. The last key of a
sequence of progress information is always "progress".

-stdin

Enable interaction on standard input. On by default unless standard input is used as an input. To
explicitly disable interaction you need to specify -nostdin.

Disabling interaction on standard input is useful, for example, if ffmpeg is in the background process
group. Roughly the same result can be achieved with ffmpeg ... < /dev/null but it requires
a shell.

-debug_ts (global)

Print timestamp information. It is off by default. This option is mostly useful for testing and
debugging purposes, and the output format may change from one version to another, so it should not
be employed by portable scripts.

See also the option -fdebug ts.

-attach filename (output)

Add an attachment to the output file. This is supported by a few formats like Matroska for e.g. fonts
used in rendering subtitles. Attachments are implemented as a specific type of stream, so this option
will add a new stream to the file. It is then possible to use per-stream options on this stream in the
usual way. Attachment streams created with this option will be created after all the other streams (i.e.
those created with -map or automatic mappings).

Note that for Matroska you also have to set the mimetype metadata tag:

ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv

(assuming that the attachment stream will be third in the output file).

-dump_attachment[:stream_specifier] filename (input,per-stream)

Extract the matching attachment stream into a file named filename. If filename is empty, then the
value of the filename metadata tag will be used.

E.g. to extract the first attachment to a file named ’out.ttf’:

ffmpeg -dump_attachment:t:0 out.ttf -i INPUT

To extract all attachments to files determined by the filename tag:

ffmpeg -dump_attachment:t "" -i INPUT

Technical note – attachments are implemented as codec extradata, so this option can actually be used
to extract extradata from any stream, not just attachments.

-noautorotate

Disable automatically rotating video based on file metadata.

5.5 Video Options# TOC

-vframes number (output)

Set the number of video frames to output. This is an obsolete alias for -frames:v, which you
should use instead.

-r[:stream_specifier] fps (input/output,per-stream)

Set frame rate (Hz value, fraction or abbreviation).

As an input option, ignore any timestamps stored in the file and instead generate timestamps
assuming constant frame rate fps. This is not the same as the -framerate option used for some
input formats like image2 or v4l2 (it used to be the same in older versions of FFmpeg). If in doubt
use -framerate instead of the input option -r.

As an output option, duplicate or drop input frames to achieve constant output frame rate fps.

-s[:stream_specifier] size (input/output,per-stream)

Set frame size.

As an input option, this is a shortcut for the video_size private option, recognized by some
demuxers for which the frame size is either not stored in the file or is configurable – e.g. raw video or
video grabbers.

As an output option, this inserts the scale video filter to the end of the corresponding filtergraph.
Please use the scale filter directly to insert it at the beginning or some other place.

The format is ‘wxh’ (default - same as source).

-aspect[:stream_specifier] aspect (output,per-stream)

Set the video display aspect ratio specified by aspect.

aspect can be a floating point number string, or a string of the form num:den, where num and den are
the numerator and denominator of the aspect ratio. For example "4:3", "16:9", "1.3333", and "1.7777" are
valid argument values.

If used together with -vcodec copy, it will affect the aspect ratio stored at container level, but not
the aspect ratio stored in encoded frames, if it exists.

-vn (output)

Disable video recording. For full manual control see the -map option.

-vcodec codec (output)

Set the video codec. This is an alias for -codec:v.

-pass[:stream_specifier] n (output,per-stream)

Select the pass number (1 or 2). It is used to do two-pass video encoding. The statistics of the video
are recorded in the first pass into a log file (see also the option -passlogfile), and in the second pass
that log file is used to generate the video at the exact requested bitrate. On pass 1, you may just
deactivate audio and set output to null, examples for Windows and Unix:

ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL
ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null

-passlogfile[:stream_specifier] prefix (output,per-stream)

Set two-pass log file name prefix to prefix, the default file name prefix is “ffmpeg2pass”. The
complete file name will be PREFIX-N.log, where N is a number specific to the output stream

-vf filtergraph (output)

Create the filtergraph specified by filtergraph and use it to filter the stream.

This is an alias for -filter:v, see the -filter option.

5.6 Advanced Video options# TOC

-pix_fmt[:stream_specifier] format (input/output,per-stream)

Set pixel format. Use -pix_fmts to show all the supported pixel formats. If the selected pixel
format can not be selected, ffmpeg will print a warning and select the best pixel format supported by
the encoder. If pix_fmt is prefixed by a +, ffmpeg will exit with an error if the requested pixel format
can not be selected, and automatic conversions inside filtergraphs are disabled. If pix_fmt is a single
+, ffmpeg selects the same pixel format as the input (or graph output) and automatic conversions are
disabled.

-sws_flags flags (input/output)

Set SwScaler flags.

-rc_override[:stream_specifier] override (output,per-stream)

Rate control override for specific intervals, formatted as "int,int,int" list separated with slashes. Two
first values are the beginning and end frame numbers, last one is quantizer to use if positive, or
quality factor if negative.

-ilme

Force interlacing support in encoder (MPEG-2 and MPEG-4 only). Use this option if your input file
is interlaced and you want to keep the interlaced format for minimum losses. The alternative is to
deinterlace the input stream with -deinterlace, but deinterlacing introduces losses.

-psnr

Calculate PSNR of compressed frames.

-vstats

Dump video coding statistics to vstats_HHMMSS.log.

-vstats_file file

Dump video coding statistics to file.

-vstats_version file

Specifies which version of the vstats format to use. Default is 2.

version = 1 :

frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time=
%0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s

version > 1:

out= %2d st= %2d frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size=
%8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s

-top[:stream_specifier] n (output,per-stream)

top=1/bottom=0/auto=-1 field first

-dc precision

Intra_dc_precision.

-vtag fourcc/tag (output)

Force video tag/fourcc. This is an alias for -tag:v.

-qphist (global)

Show QP histogram

-vbsf bitstream_filter

Deprecated see -bsf

-force_key_frames[:stream_specifier] time[,time...] (output,per-stream)
-force_key_frames[:stream_specifier] expr:expr (output,per-stream)

Force key frames at the specified timestamps, more precisely at the first frames after each specified
time.

If the argument is prefixed with expr:, the string expr is interpreted like an expression and is
evaluated for each frame. A key frame is forced in case the evaluation is non-zero.

If one of the times is "chapters[delta]", it is expanded into the time of the beginning of all
chapters in the file, shifted by delta, expressed as a time in seconds. This option can be useful to
ensure that a seek point is present at a chapter mark or any other designated place in the output file.

For example, to insert a key frame at 5 minutes, plus key frames 0.1 second before the beginning of
every chapter:

-force_key_frames 0:05:00,chapters-0.1

The expression in expr can contain the following constants:

n

the number of current processed frame, starting from 0

n_forced

the number of forced frames

prev_forced_n

the number of the previous forced frame, it is NAN when no keyframe was forced yet

prev_forced_t

the time of the previous forced frame, it is NAN when no keyframe was forced yet

t

the time of the current processed frame

For example to force a key frame every 5 seconds, you can specify:

-force_key_frames expr:gte(t,n_forced*5)

To force a key frame 5 seconds after the time of the last forced one, starting from second 13:

-force_key_frames expr:if(isnan(prev_forced_t),gte(t,13),gte(t,prev_forced_t+5))

Note that forcing too many keyframes is very harmful for the lookahead algorithms of certain
encoders: using fixed-GOP options or similar would be more efficient.

-copyinkf[:stream_specifier] (output,per-stream)

When doing stream copy, copy also non-key frames found at the beginning.

-init_hw_device type[=name][:device[,key=value...]]

Initialise a new hardware device of type type called name, using the given device parameters. If no
name is specified it will receive a default name of the form "type%d".

The meaning of device and the following arguments depends on the device type:

cuda

device is the number of the CUDA device.

dxva2

device is the number of the Direct3D 9 display adapter.

vaapi

device is either an X11 display name or a DRM render node. If not specified, it will attempt to
open the default X11 display ($DISPLAY) and then the first DRM render node
(/dev/dri/renderD128).

vdpau

device is an X11 display name. If not specified, it will attempt to open the default X11 display
($DISPLAY).

qsv

device selects a value in ‘MFX_IMPL_*’. Allowed values are:

auto
sw
hw
auto_any
hw_any
hw2
hw3
hw4

If not specified, ‘auto_any’ is used. (Note that it may be easier to achieve the desired result
for QSV by creating the platform-appropriate subdevice (‘dxva2’ or ‘vaapi’) and then
deriving a QSV device from that.)

opencl

device selects the platform and device as platform_index.device_index.

The set of devices can also be filtered using the key-value pairs to find only devices matching
particular platform or device strings.

The strings usable as filters are:

platform_profile
platform_version
platform_name
platform_vendor
platform_extensions
device_name
device_vendor
driver_version
device_version
device_profile
device_extensions
device_type

The indices and filters must together uniquely select a device.

Examples:

-init_hw_device opencl:0.1

Choose the second device on the first platform.

-init_hw_device opencl:,device_name=Foo9000

Choose the device with a name containing the string Foo9000.

-init_hw_device opencl:1,device_type=gpu,device_extensions=cl_khr_fp16

Choose the GPU device on the second platform supporting the cl_khr_fp16 extension.

-init_hw_device type[=name]@source

Initialise a new hardware device of type type called name, deriving it from the existing device with
the name source.

-init_hw_device list

List all hardware device types supported in this build of ffmpeg.

-filter_hw_device name

Pass the hardware device called name to all filters in any filter graph. This can be used to set the
device to upload to with the hwupload filter, or the device to map to with the hwmap filter. Other
filters may also make use of this parameter when they require a hardware device. Note that this is
typically only required when the input is not already in hardware frames - when it is, filters will
derive the device they require from the context of the frames they receive as input.

This is a global setting, so all filters will receive the same device.

-hwaccel[:stream_specifier] hwaccel (input,per-stream)

Use hardware acceleration to decode the matching stream(s). The allowed values of hwaccel are:

none

Do not use any hardware acceleration (the default).

auto

Automatically select the hardware acceleration method.

vdpau

Use VDPAU (Video Decode and Presentation API for Unix) hardware acceleration.

dxva2

Use DXVA2 (DirectX Video Acceleration) hardware acceleration.

vaapi

Use VAAPI (Video Acceleration API) hardware acceleration.

qsv

Use the Intel QuickSync Video acceleration for video transcoding.

Unlike most other values, this option does not enable accelerated decoding (that is used
automatically whenever a qsv decoder is selected), but accelerated transcoding, without copying
the frames into the system memory.

For it to work, both the decoder and the encoder must support QSV acceleration and no filters
must be used.

This option has no effect if the selected hwaccel is not available or not supported by the chosen
decoder.

Note that most acceleration methods are intended for playback and will not be faster than software
decoding on modern CPUs. Additionally, ffmpeg will usually need to copy the decoded frames
from the GPU memory into the system memory, resulting in further performance loss. This option is
thus mainly useful for testing.

-hwaccel_device[:stream_specifier] hwaccel_device (input,per-stream)

Select a device to use for hardware acceleration.

This option only makes sense when the -hwaccel option is also specified. It can either refer to an
existing device created with -init_hw_device by name, or it can create a new device as if
‘-init_hw_device’ type:hwaccel_device were called immediately before.

-hwaccels

List all hardware acceleration methods supported in this build of ffmpeg.

5.7 Audio Options# TOC

-aframes number (output)

Set the number of audio frames to output. This is an obsolete alias for -frames:a, which you
should use instead.

-ar[:stream_specifier] freq (input/output,per-stream)

Set the audio sampling frequency. For output streams it is set by default to the frequency of the
corresponding input stream. For input streams this option only makes sense for audio grabbing
devices and raw demuxers and is mapped to the corresponding demuxer options.

-aq q (output)

Set the audio quality (codec-specific, VBR). This is an alias for -q:a.

-ac[:stream_specifier] channels (input/output,per-stream)

Set the number of audio channels. For output streams it is set by default to the number of input audio
channels. For input streams this option only makes sense for audio grabbing devices and raw
demuxers and is mapped to the corresponding demuxer options.

-an (output)

Disable audio recording. For full manual control see the -map option.

-acodec codec (input/output)

Set the audio codec. This is an alias for -codec:a.

-sample_fmt[:stream_specifier] sample_fmt (output,per-stream)

Set the audio sample format. Use -sample_fmts to get a list of supported sample formats.

-af filtergraph (output)

Create the filtergraph specified by filtergraph and use it to filter the stream.

This is an alias for -filter:a, see the -filter option.

5.8 Advanced Audio options# TOC

-atag fourcc/tag (output)

Force audio tag/fourcc. This is an alias for -tag:a.

-absf bitstream_filter

Deprecated, see -bsf

-guess_layout_max channels (input,per-stream)

If some input channel layout is not known, try to guess only if it corresponds to at most the specified
number of channels. For example, 2 tells to ffmpeg to recognize 1 channel as mono and 2 channels
as stereo but not 6 channels as 5.1. The default is to always try to guess. Use 0 to disable all guessing.

5.9 Subtitle options# TOC

-scodec codec (input/output)

Set the subtitle codec. This is an alias for -codec:s.

-sn (output)

Disable subtitle recording. For full manual control see the -map option.

-sbsf bitstream_filter

Deprecated, see -bsf

5.10 Advanced Subtitle options# TOC

-fix_sub_duration

Fix subtitles durations. For each subtitle, wait for the next packet in the same stream and adjust the
duration of the first to avoid overlap. This is necessary with some subtitles codecs, especially DVB
subtitles, because the duration in the original packet is only a rough estimate and the end is actually
marked by an empty subtitle frame. Failing to use this option when necessary can result in
exaggerated durations or muxing failures due to non-monotonic timestamps.

Note that this option will delay the output of all data until the next subtitle packet is decoded: it may
increase memory consumption and latency a lot.

-canvas_size size

Set the size of the canvas used to render subtitles.

5.11 Advanced options# TOC

-map
[-]input_file_id[:stream_specifier][?][,sync_file_id[:stream_specifier]] |
[linklabel] (output)

Designate one or more input streams as a source for the output file. Each input stream is identified by
the input file index input_file_id and the input stream index input_stream_id within the input file.
Both indices start at 0. If specified, sync_file_id:stream_specifier sets which input stream is used as a
presentation sync reference.

The first -map option on the command line specifies the source for output stream 0, the second
-map option specifies the source for output stream 1, etc.

A - character before the stream identifier creates a "negative" mapping. It disables matching streams
from already created mappings.

A trailing ? after the stream index will allow the map to be optional: if the map matches no streams
the map will be ignored instead of failing. Note the map will still fail if an invalid input file index is
used; such as if the map refers to a non-existent input.

An alternative [linklabel] form will map outputs from complex filter graphs (see the
-filter_complex option) to the output file. linklabel must correspond to a defined output link
label in the graph.

For example, to map ALL streams from the first input file to output

ffmpeg -i INPUT -map 0 output

For example, if you have two audio streams in the first input file, these streams are identified by "0:0"
and "0:1". You can use -map to select which streams to place in an output file. For example:

ffmpeg -i INPUT -map 0:1 out.wav

will map the input stream in INPUT identified by "0:1" to the (single) output stream in out.wav.

For example, to select the stream with index 2 from input file a.mov (specified by the identifier
"0:2"), and stream with index 6 from input b.mov (specified by the identifier "1:6"), and copy them
to the output file out.mov:

ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov

To select all video and the third audio stream from an input file:

ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT

To map all the streams except the second audio, use negative mappings

ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT

To map the video and audio streams from the first input, and using the trailing ?, ignore the audio
mapping if no audio streams exist in the first input:

ffmpeg -i INPUT -map 0:v -map 0:a? OUTPUT

To pick the English audio stream:

ffmpeg -i INPUT -map 0:m:language:eng OUTPUT

Note that using this option disables the default mappings for this output file.

-ignore_unknown

Ignore input streams with unknown type instead of failing if copying such streams is attempted.

-copy_unknown

Allow input streams with unknown type to be copied instead of failing if copying such streams is
attempted.

-map_channel
[input_file_id.stream_specifier.channel_id|-1][?][:output_file_id.stream_specifier]

Map an audio channel from a given input to an output. If output_file_id.stream_specifier is not set,
the audio channel will be mapped on all the audio streams.

Using "-1" instead of input_file_id.stream_specifier.channel_id will map a muted channel.

A trailing ? will allow the map_channel to be optional: if the map_channel matches no channel the
map_channel will be ignored instead of failing.

For example, assuming INPUT is a stereo audio file, you can switch the two audio channels with the
following command:

ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT

If you want to mute the first channel and keep the second:

ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT

The order of the "-map_channel" option specifies the order of the channels in the output stream. The
output channel layout is guessed from the number of channels mapped (mono if one "-map_channel",
stereo if two, etc.). Using "-ac" in combination of "-map_channel" makes the channel gain levels to
be updated if input and output channel layouts don’t match (for instance two "-map_channel" options
and "-ac 6").

You can also extract each channel of an input to specific outputs; the following command extracts
two channels of the INPUT audio stream (file 0, stream 0) to the respective OUTPUT_CH0 and
OUTPUT_CH1 outputs:

ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1

The following example splits the channels of a stereo input into two separate streams, which are put
into the same output file:

ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg

Note that currently each output stream can only contain channels from a single input stream; you
can’t for example use "-map_channel" to pick multiple input audio channels contained in different
streams (from the same or different files) and merge them into a single output stream. It is therefore
not currently possible, for example, to turn two separate mono streams into a single stereo stream.
However splitting a stereo stream into two single channel mono streams is possible.

If you need this feature, a possible workaround is to use the amerge filter. For example, if you need
to merge a media (here input.mkv) with 2 mono audio streams into one single stereo channel
audio stream (and keep the video stream), you can use the following command:

ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv

To map the first two audio channels from the first input, and using the trailing ?, ignore the audio
channel mapping if the first input is mono instead of stereo:

ffmpeg -i INPUT -map_channel 0.0.0 -map_channel 0.0.1? OUTPUT

-map_metadata[:metadata_spec_out] infile[:metadata_spec_in]
(output,per-metadata)

Set metadata information of the next output file from infile. Note that those are file indices
(zero-based), not filenames. Optional metadata_spec_in/out parameters specify, which metadata to
copy. A metadata specifier can have the following forms:

g

global metadata, i.e. metadata that applies to the whole file

s[:stream_spec]

per-stream metadata. stream_spec is a stream specifier as described in the Stream specifiers
chapter. In an input metadata specifier, the first matching stream is copied from. In an output
metadata specifier, all matching streams are copied to.

c:chapter_index

per-chapter metadata. chapter_index is the zero-based chapter index.

p:program_index

per-program metadata. program_index is the zero-based program index.

If metadata specifier is omitted, it defaults to global.

By default, global metadata is copied from the first input file, per-stream and per-chapter metadata is
copied along with streams/chapters. These default mappings are disabled by creating any mapping of
the relevant type. A negative file index can be used to create a dummy mapping that just disables
automatic copying.

For example to copy metadata from the first stream of the input file to global metadata of the output
file:

ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3

To do the reverse, i.e. copy global metadata to all audio streams:

ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv

Note that simple 0 would work as well in this example, since global metadata is assumed by default.

-map_chapters input_file_index (output)

Copy chapters from input file with index input_file_index to the next output file. If no chapter
mapping is specified, then chapters are copied from the first input file with at least one chapter. Use a
negative file index to disable any chapter copying.

-benchmark (global)

Show benchmarking information at the end of an encode. Shows real, system and user time used and
maximum memory consumption. Maximum memory consumption is not supported on all systems, it will
usually display as 0 if not supported.

-benchmark_all (global)

Show benchmarking information during the encode. Shows real, system and user time used in various
steps (audio/video encode/decode).

-timelimit duration (global)

Exit after ffmpeg has been running for duration seconds.

-dump (global)

Dump each input packet to stderr.

-hex (global)

When dumping packets, also dump the payload.

-re (input)

Read input at native frame rate. Mainly used to simulate a grab device, or live input stream (e.g.
when reading from a file). Should not be used with actual grab devices or live input streams (where it
can cause packet loss). By default ffmpeg attempts to read the input(s) as fast as possible. This
option will slow down the reading of the input(s) to the native frame rate of the input(s). It is useful
for real-time output (e.g. live streaming).

-loop_output number_of_times

Repeatedly loop output for formats that support looping such as animated GIF (0 will loop the output
infinitely). This option is deprecated, use -loop.

-vsync parameter

Video sync method. For compatibility reasons old values can be specified as numbers. Newly added
values will have to be specified as strings always.

0, passthrough

Each frame is passed with its timestamp from the demuxer to the muxer.

1, cfr

Frames will be duplicated and dropped to achieve exactly the requested constant frame rate.

2, vfr

Frames are passed through with their timestamp or dropped so as to prevent 2 frames from
having the same timestamp.

drop

As passthrough but destroys all timestamps, making the muxer generate fresh timestamps based
on frame-rate.

-1, auto

Chooses between 1 and 2 depending on muxer capabilities. This is the default method.

Note that the timestamps may be further modified by the muxer, after this. For example, in the case
that the format option avoid_negative_ts is enabled.

With -map you can select from which stream the timestamps should be taken. You can leave either
video or audio unchanged and sync the remaining stream(s) to the unchanged one.

-frame_drop_threshold parameter

Frame drop threshold, which specifies how much behind video frames can be before they are
dropped. In frame rate units, so 1.0 is one frame. The default is -1.1. One possible usecase is to avoid
framedrops in case of noisy timestamps or to increase frame drop precision in case of exact
timestamps.

-async samples_per_second

Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps, the parameter is
the maximum samples per second by which the audio is changed. -async 1 is a special case where
only the start of the audio stream is corrected without any later correction.

Note that the timestamps may be further modified by the muxer, after this. For example, in the case
that the format option avoid_negative_ts is enabled.

This option has been deprecated. Use the aresample audio filter instead.

-copyts

Do not process input timestamps, but keep their values without trying to sanitize them. In particular,
do not remove the initial start time offset value.

Note that, depending on the vsync option or on specific muxer processing (e.g. in case the format
option avoid_negative_ts is enabled) the output timestamps may mismatch with the input
timestamps even when this option is selected.

-start_at_zero

When used with copyts, shift input timestamps so they start at zero.

This means that using e.g. -ss 50 will make output timestamps start at 50 seconds, regardless of
what timestamp the input file started at.

-copytb mode

Specify how to set the encoder timebase when stream copying. mode is an integer numeric value, and
can assume one of the following values:

1

Use the demuxer timebase.

The time base is copied to the output encoder from the corresponding input demuxer. This is
sometimes required to avoid non monotonically increasing timestamps when copying video
streams with variable frame rate.

0

Use the decoder timebase.

The time base is copied to the output encoder from the corresponding input decoder.

-1

Try to make the choice automatically, in order to generate a sane output.

Default value is -1.

-enc_time_base[:stream_specifier] timebase (output,per-stream)

Set the encoder timebase. timebase is a floating point number, and can assume one of the following
values:

0

Assign a default value according to the media type.

For video - use 1/framerate, for audio - use 1/samplerate.

-1

Use the input stream timebase when possible.

If an input stream is not available, the default timebase will be used.

>0

Use the provided number as the timebase.

This field can be provided as a ratio of two integers (e.g. 1:24, 1:48000) or as a floating point
number (e.g. 0.04166, 2.0833e-5)

Default value is 0.

-bitexact (input/output)

Enable bitexact mode for (de)muxer and (de/en)coder

-shortest (output)

Finish encoding when the shortest input stream ends.

-dts_delta_threshold

Timestamp discontinuity delta threshold.

-muxdelay seconds (input)

Set the maximum demux-decode delay.

-muxpreload seconds (input)

Set the initial demux-decode delay.

-streamid output-stream-index:new-value (output)

Assign a new stream-id value to an output stream. This option should be specified prior to the output
filename to which it applies. For the situation where multiple output files exist, a streamid may be
reassigned to a different value.

For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for an output mpegts file:

ffmpeg -i inurl -streamid 0:33 -streamid 1:36 out.ts

-bsf[:stream_specifier] bitstream_filters (output,per-stream)

Set bitstream filters for matching streams. bitstream_filters is a comma-separated list of bitstream
filters. Use the -bsfs option to get the list of bitstream filters.

ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264

ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt

-tag[:stream_specifier] codec_tag (input/output,per-stream)

Force a tag/fourcc for matching streams.

-timecode hh:mm:ssSEPff

Specify Timecode for writing. SEP is ’:’ for non drop timecode and ’;’ (or ’.’) for drop.

ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg

-filter_complex filtergraph (global)

Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or outputs. For simple
graphs – those with one input and one output of the same type – see the -filter options.
filtergraph is a description of the filtergraph, as described in the “Filtergraph syntax” section of the
ffmpeg-filters manual.

Input link labels must refer to input streams using the [file_index:stream_specifier]
syntax (i.e. the same as -map uses). If stream_specifier matches multiple streams, the first one will
be used. An unlabeled input will be connected to the first unused input stream of the matching type.

Output link labels are referred to with -map. Unlabeled outputs are added to the first output file.

Note that with this option it is possible to use only lavfi sources without normal input files.

For example, to overlay an image over video

ffmpeg -i video.mkv -i image.png -filter_complex ’[0:v][1:v]overlay[out]’ -map
’[out]’ out.mkv

Here [0:v] refers to the first video stream in the first input file, which is linked to the first (main)
input of the overlay filter. Similarly the first video stream in the second input is linked to the second
(overlay) input of overlay.

Assuming there is only one video stream in each input file, we can omit input labels, so the above is
equivalent to

ffmpeg -i video.mkv -i image.png -filter_complex ’overlay[out]’ -map
’[out]’ out.mkv

Furthermore we can omit the output label and the single output from the filter graph will be added to
the output file automatically, so we can simply write

ffmpeg -i video.mkv -i image.png -filter_complex ’overlay’ out.mkv

To generate 5 seconds of pure red video using lavfi color source:

ffmpeg -filter_complex ’color=c=red’ -t 5 out.mkv

-filter_complex_threads nb_threads (global)

Defines how many threads are used to process a filter_complex graph. Similar to filter_threads but
used for -filter_complex graphs only. The default is the number of available CPUs.

-lavfi filtergraph (global)

Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or outputs. Equivalent to
-filter_complex.

-filter_complex_script filename (global)

This option is similar to -filter_complex, the only difference is that its argument is the name of
the file from which a complex filtergraph description is to be read.

-accurate_seek (input)

This option enables or disables accurate seeking in input files with the -ss option. It is enabled by
default, so seeking is accurate when transcoding. Use -noaccurate_seek to disable it, which
may be useful e.g. when copying some streams and transcoding the others.

-seek_timestamp (input)

This option enables or disables seeking by timestamp in input files with the -ss option. It is disabled
by default. If enabled, the argument to the -ss option is considered an actual timestamp, and is not
offset by the start time of the file. This matters only for files which do not start from timestamp 0,
such as transport streams.

-thread_queue_size size (input)

This option sets the maximum number of queued packets when reading from the file or device. With
low latency / high rate live streams, packets may be discarded if they are not read in a timely manner;
raising this value can avoid it.

-sdp_file file (global)

Print sdp information for an output stream to file. This allows dumping sdp information when at least
one output isn’t an rtp stream. (Requires at least one of the output formats to be rtp).

-discard (input)

Allows discarding specific streams or frames of streams at the demuxer. Not all demuxers support
this.

none

Discard no frame.

default

Default, which discards no frames.

noref

Discard all non-reference frames.

bidir

Discard all bidirectional frames.

nokey

Discard all frames excepts keyframes.

all

Discard all frames.

-abort_on flags (global)

Stop and abort on various conditions. The following flags are available:

empty_output

No packets were passed to the muxer, the output is empty.

-xerror (global)

Stop and exit on error

-max_muxing_queue_size packets (output,per-stream)

When transcoding audio and/or video streams, ffmpeg will not begin writing into the output until it
has one packet for each such stream. While waiting for that to happen, packets for other streams are
buffered. This option sets the size of this buffer, in packets, for the matching output stream.

The default value of this option should be high enough for most uses, so only touch this option if you
are sure that you need it.

As a special exception, you can use a bitmap subtitle stream as input: it will be converted into a video with
the same size as the largest video in the file, or 720x576 if no video is present. Note that this is an
experimental and temporary solution. It will be removed once libavfilter has proper support for subtitles.

For example, to hardcode subtitles on top of a DVB-T recording stored in MPEG-TS format, delaying the
subtitles by 1 second:

ffmpeg -i input.ts -filter_complex \
 ’[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay’ \
 -sn -map ’#0x2dc’ output.mkv

(0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video, audio and subtitles streams;
0:0, 0:3 and 0:7 would have worked too)

5.12 Preset files# TOC

A preset file contains a sequence of option=value pairs, one for each line, specifying a sequence of options
which would be awkward to specify on the command line. Lines starting with the hash (’#’) character are
ignored and are used to provide comments. Check the presets directory in the FFmpeg source tree for
examples.

There are two types of preset files: ffpreset and avpreset files.

5.12.1 ffpreset files# TOC

ffpreset files are specified with the vpre, apre, spre, and fpre options. The fpre option takes the
filename of the preset instead of a preset name as input and can be used for any kind of codec. For the
vpre, apre, and spre options, the options specified in a preset file are applied to the currently selected
codec of the same type as the preset option.

The argument passed to the vpre, apre, and spre preset options identifies the preset file to use
according to the following rules:

First ffmpeg searches for a file named arg.ffpreset in the directories $FFMPEG_DATADIR (if set), and
$HOME/.ffmpeg, and in the datadir defined at configuration time (usually PREFIX/share/ffmpeg)
or in a ffpresets folder along the executable on win32, in that order. For example, if the argument is
libvpx-1080p, it will search for the file libvpx-1080p.ffpreset.

If no such file is found, then ffmpeg will search for a file named codec_name-arg.ffpreset in the
above-mentioned directories, where codec_name is the name of the codec to which the preset file options
will be applied. For example, if you select the video codec with -vcodec libvpx and use -vpre
1080p, then it will search for the file libvpx-1080p.ffpreset.

5.12.2 avpreset files# TOC

avpreset files are specified with the pre option. They work similar to ffpreset files, but they only allow
encoder- specific options. Therefore, an option=value pair specifying an encoder cannot be used.

When the pre option is specified, ffmpeg will look for files with the suffix .avpreset in the directories
$AVCONV_DATADIR (if set), and $HOME/.avconv, and in the datadir defined at configuration time
(usually PREFIX/share/ffmpeg), in that order.

First ffmpeg searches for a file named codec_name-arg.avpreset in the above-mentioned directories,
where codec_name is the name of the codec to which the preset file options will be applied. For example,
if you select the video codec with -vcodec libvpx and use -pre 1080p, then it will search for the
file libvpx-1080p.avpreset.

If no such file is found, then ffmpeg will search for a file named arg.avpreset in the same directories.

6 Examples# TOC

6.1 Video and Audio grabbing# TOC

If you specify the input format and device then ffmpeg can grab video and audio directly.

ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg

Or with an ALSA audio source (mono input, card id 1) instead of OSS:

ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg

Note that you must activate the right video source and channel before launching ffmpeg with any TV
viewer such as xawtv by Gerd Knorr. You also have to set the audio recording levels correctly with a
standard mixer.

6.2 X11 grabbing# TOC

Grab the X11 display with ffmpeg via

ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0 /tmp/out.mpg

0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable.

ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0+10,20 /tmp/out.mpg

0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable. 10 is the
x-offset and 20 the y-offset for the grabbing.

6.3 Video and Audio file format conversion# TOC

Any supported file format and protocol can serve as input to ffmpeg:

Examples:

You can use YUV files as input:

ffmpeg -i /tmp/test%d.Y /tmp/out.mpg

It will use the files:

/tmp/test0.Y, /tmp/test0.U, /tmp/test0.V,
/tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc...

The Y files use twice the resolution of the U and V files. They are raw files, without header. They can
be generated by all decent video decoders. You must specify the size of the image with the -s option
if ffmpeg cannot guess it.

http://linux.bytesex.org/xawtv/

You can input from a raw YUV420P file:

ffmpeg -i /tmp/test.yuv /tmp/out.avi

test.yuv is a file containing raw YUV planar data. Each frame is composed of the Y plane followed
by the U and V planes at half vertical and horizontal resolution.

You can output to a raw YUV420P file:

ffmpeg -i mydivx.avi hugefile.yuv

You can set several input files and output files:

ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg

Converts the audio file a.wav and the raw YUV video file a.yuv to MPEG file a.mpg.

You can also do audio and video conversions at the same time:

ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2

Converts a.wav to MPEG audio at 22050 Hz sample rate.

You can encode to several formats at the same time and define a mapping from input stream to output
streams:

ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2

Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. ’-map file:index’ specifies which
input stream is used for each output stream, in the order of the definition of output streams.

You can transcode decrypted VOBs:

ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi

This is a typical DVD ripping example; the input is a VOB file, the output an AVI file with MPEG-4
video and MP3 audio. Note that in this command we use B-frames so the MPEG-4 stream is DivX5
compatible, and GOP size is 300 which means one intra frame every 10 seconds for 29.97fps input
video. Furthermore, the audio stream is MP3-encoded so you need to enable LAME support by
passing --enable-libmp3lame to configure. The mapping is particularly useful for DVD
transcoding to get the desired audio language.

NOTE: To see the supported input formats, use ffmpeg -demuxers.

You can extract images from a video, or create a video from many images:

For extracting images from a video:

ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg

This will extract one video frame per second from the video and will output them in files named
foo-001.jpeg, foo-002.jpeg, etc. Images will be rescaled to fit the new WxH values.

If you want to extract just a limited number of frames, you can use the above command in
combination with the -frames:v or -t option, or in combination with -ss to start extracting from a
certain point in time.

For creating a video from many images:

ffmpeg -f image2 -framerate 12 -i foo-%03d.jpeg -s WxH foo.avi

The syntax foo-%03d.jpeg specifies to use a decimal number composed of three digits padded
with zeroes to express the sequence number. It is the same syntax supported by the C printf function,
but only formats accepting a normal integer are suitable.

When importing an image sequence, -i also supports expanding shell-like wildcard patterns
(globbing) internally, by selecting the image2-specific -pattern_type glob option.

For example, for creating a video from filenames matching the glob pattern foo-*.jpeg:

ffmpeg -f image2 -pattern_type glob -framerate 12 -i ’foo-*.jpeg’ -s WxH foo.avi

You can put many streams of the same type in the output:

ffmpeg -i test1.avi -i test2.avi -map 1:1 -map 1:0 -map 0:1 -map 0:0 -c copy -y test12.nut

The resulting output file test12.nut will contain the first four streams from the input files in
reverse order.

To force CBR video output:

ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v

The four options lmin, lmax, mblmin and mblmax use ’lambda’ units, but you may use the
QP2LAMBDA constant to easily convert from ’q’ units:

ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext

7 See Also# TOC
ffmpeg-all, ffplay, ffprobe, ffmpeg-utils, ffmpeg-scaler, ffmpeg-resampler, ffmpeg-codecs,
ffmpeg-bitstream-filters, ffmpeg-formats, ffmpeg-devices, ffmpeg-protocols, ffmpeg-filters

8 Authors# TOC
The FFmpeg developers.

For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg), e.g. by
typing the command git log in the FFmpeg source directory, or browsing the online repository at
http://source.ffmpeg.org.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

This document was generated using makeinfo.

http://source.ffmpeg.org/
http://www.gnu.org/software/texinfo/

	ffmpeg Documentation
	Table of Contents
	1 Synopsis# TOC
	2 Description# TOC
	3 Detailed description# TOC
	3.1 Filtering# TOC
	3.1.1 Simple filtergraphs# TOC
	3.1.2 Complex filtergraphs# TOC

	3.2 Stream copy# TOC

	4 Stream selection# TOC
	4.1 Description# TOC
	4.1.1 Automatic stream selection# TOC
	4.1.2 Manual stream selection# TOC
	4.1.3 Complex filtergraphs# TOC
	4.1.4 Stream handling# TOC

	4.2 Examples# TOC
	Example: automatic stream selection
	Example: automatic subtitles selection
	Example: unlabeled filtergraph outputs
	Example: labeled filtergraph outputs

	5 Options# TOC
	5.1 Stream specifiers# TOC
	5.2 Generic options# TOC
	5.3 AVOptions# TOC
	5.4 Main options# TOC
	5.5 Video Options# TOC
	5.6 Advanced Video options# TOC
	5.7 Audio Options# TOC
	5.8 Advanced Audio options# TOC
	5.9 Subtitle options# TOC
	5.10 Advanced Subtitle options# TOC
	5.11 Advanced options# TOC
	5.12 Preset files# TOC
	5.12.1 ffpreset files# TOC
	5.12.2 avpreset files# TOC

	6 Examples# TOC
	6.1 Video and Audio grabbing# TOC
	6.2 X11 grabbing# TOC
	6.3 Video and Audio file format conversion# TOC

	7 See Also# TOC
	8 Authors# TOC

